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INTRODUCTION

Discrete mathematics has had many practical applications in recent
years and this is only one of the reasons for its increasing dynamism. The
study of finite structures is a broad area which has a unity not merely of
description but also in practice, since many of the structures studied give
results which can be applied to other, apparently dissimilar structures. Apart
from the applications, which themselves generate problems, internally there
are still many difficult and interesting problems in finite geometry and com-
binatorics, and we are happy to be able to demonstrate progress.

It was a great pleasure to see several Russian colleagues participating
both because they were able to do so, some for the first time, and because
this is an area of Mathematics not as diffuse in Russia as elsewhere. It was
also good to see the participation of a significant number of talented, younger
colleagues, but at the same time sad to note the difficulty they are having in
finding permanent positions.

The conference papers are here divided into themes. The division is
somewhat artificial as some papers could be placed in more than one group.
The style of mathematics is very much resolving problems rather than the
construction of grand theories. There are still many puzzling features about
the sub-structures of finite projective spaces, as well as about finite strongly
regular graphs, finite projective planes, and other particular finite diagram
geometries. Finite groups are as ever a strong theme for several reasons. There
is still much work to be done to give a clear geometric identification of the
finite simple groups. There are also many problems in characterizing struc-
tures which either have a particular group acting on them or which have some
degree of symmetry from a group action.

Generalized polygons

Bader and Lunardon together and Lunardon alone give new constructions of
classical hexagons. Buekenhout and Van Maldeghem show that there are no
surprises in the action of a classical group on a hexagon or octagon. De Smet
and Van Maldeghem give a new geometrical characterization of the finite clas-
sical hexagons and characterise some finite Moufang hexagons, and van Bon



determines some extended generalized hexagons having certain geometric and
group-theoretical properties. Payne constructs a coherent configuration inside
a translation generalized quadrangle. Brouwer shows that the subgeometry of
a polygon induced on the objects in general position with respect to a given
flag is connected.

Graphs and their groups

Brouwer, Fon-der-Flaass, and Shpectorov find the three graphs which locally
are the incidence graph of the unique biplane on 7 points. Haemers shows
that a strongly regular graph on 76 points with consistent parametric con-
ditions cannot exist. Munemasa, Pasechnik, and Shpectorov characterize the
graphs of alternating and quadratic forms over GF(2), whereas Munemasa
and Shpectorov characterize alternating forms over all larger fields. In a sim-
ilar vein, Pasechnik describes the graph of a certain GF(3)-geometry, which
leads to a characterization of Fischer’s sporadic simple groups. Soicher shows
that the Lyons simple group has no distance-transitive representation and
hence determines all faithful multiplicity-free representations of this group.

Finite Desarguesian planes

A spread of a Hermitian curve in a Desarguesian plane is a set of non-tangent
lines partitioning the points of the curve. Baker, Ebert, Korchmdros, and
Szényi study such spreads with the property that no line of the spread con-
tains the pole of any other line in the spread and deduce a result on the linear
code of the plane. A minimal blocking set in PG(2, ¢) has size b satisfying
g+ g+ 1 <b<gy/g+1, with the bounds being achieved for square ¢ by a
Baer subplane and a Hermitian curve. Related to this, Blokhuis and Metsch
study strong representative systems and show that, for ¢ > 25, one cannot
have b = ¢+/q. A nucleus of a set of ¢ + 1 points in PG(2, q) is a point not
in the set such that every line through it meets the set; it is known that the
number of nuclei is at most ¢ — 1. Blokhuis and Mazzocca use a mapping
to PG(3,q) to deduce more about the structure of sets in PG(2, g) with the
maximum number of nuclei. Glynn relates the code of PG(2, ¢) with g even
to the study of nonics, where a nonic is defined to be either a conic plus its
nucleus or a line pair, real or imaginary, less the point of intersection. Gordon
obtains a formula for the number of projectively distinct k-arcs in PG(n, q)
and also finds an efficient algorithm for determining this number; this is ap-
plied to finding the number of projectively distinct k-arcs and projectively
distinct complete k-arcs in PG(2,11) and PG(2,13). Hirschfeld and Voloch
obtain further results on the characterization of sets of points in PG(2,q)
with at most three points on a line as cubic curves.
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Higher-dimensional projective spaces

Storme and Szényi examine k-arcs having many points in common with a
normal rational curve. For odd ¢, it is elementary that a plane k-arc not
contained in a conic has at most (¢ + 3)/2 points on the conic. The problem
is much more difficult in higher dimensions; it is shown that, for large g and
bounded n, if an arc has more than (g+1)/2 points in common with a normal
rational curve, it is contained in the curve. A partial flock of a quadric cone in
PG(3, q) is a set of disjoint conics on the cone and a flock is a set of g conics
forming a partition of the cone less its vertex. Thas, Herssens and De Clerck
survey the known flocks and construct a new flock for ¢ = 11 which generalizes
to a partial flock of size 11 for any ¢ = —1 (mod 12). An ovoid of a quadric
is a set of points meeting every generator (subspace of maximum dimension
lying on the quadric) precisely once. Moorhouse describes a 9-dimensional
lattice which defines simply an ovoid on a hyperbolic quadric in PG(7,p), p
prime. These ovoids had previously been constructed by the author from the
Eg root lattice.

Non-Desarguesian planes

Ho investigates Singer groups S acting on a projective plane of order n and
proves, among other things, that, if the multiplier group M(S) has even order,
each subgroup of S is invariant under the involution of M(S), except possibly
if n = 16 and S is non-abelian. Jha and Wene find the number of central units
of a commutative semifield plane. Johnson characterises certain translation
planes of order g% as equivalent to particular subsets of cardinality ¢ of the
collineation group PT'L(2, q). Wett] extends results on nuclei in a Desarguesian
plane to the non-Desarguesian case.

Block designs

At~ (v,k,)) design is an incidence structure of v points and b blocks with
k points on each block and the essential property that through ¢ points there
are precisely A blocks. Such structures exist for all ¢ by Teirlinck’s theorem,
but the known examples mostly have very large A. Cameron and Praeger
investigate block-transitive designs with 5 <t < 8. Among other results they
determine the possible automorphism groups of block-transitive 6-designs and
flag-transitive 5-designs.

Polar spaces

Buekenhout presents an old result of Parmentier which axiomatizes a pair
(P, ), where P is a projective space and 7 a polarity, so that the axioms
defining P alone are weaker than usual. Shult develops the axiomatization of
Veldkamp spaces for point-line geometries.
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Diagram geometries

Buekenhout and King study flag-transitive diagrams of rank 3 such that the
residues of 0-elements are dual Petersen graphs, of 1-elements are generalized
digons, and of 2-elements are finite linear spaces. The linear space turns out to
be either a projective plane, in which case there are precisely two geometries,
or the complete graph on four vertices. In the latter case there are no geome-
tries for which the group acts primitively on the 2-elements, but examples are
given of the imprimitive case.

A grid is an incidence structure of points and lines such that any line
has at least two points and any two points are incident with at most one line,
with the additional property that the lines fall into two classes such that two
lines intersect if and only if they belong to different classes; these intersections
give all the points. Meixner and Pasini describe all known extensions of grids.
Ghinelli classifies the flag-transitive rank 3 geometries in which the planes
are linear spaces with constant line size and the point residues are classical
generalized quadrangles other than grids. Huybrechts gives a new proof of
the commutativity of the division ring for a thick, residually-connected D,-
geometry.

A generalized Fischer space is a partial linear space in which any two in-
tersecting lines generate a subspace that is an affine plane or its dual. Subject
only to some non-degeneracy conditions, Cuypers gives a complete classifica-
tion of these spaces. Miihlherr describes a geometric method of constructing,
from the diagrams, Coxeter groups as subgroups of other Coxeter groups.



Generalized hexagons and BLT-sets
L. Bader G. Lunardon*

Abstract

An alternative construction for the dual G,(q)-hexagon is given for g
odd and different from 3".

1. Introduction

In [4], W.M. Kantor has constructed the generalized quadrangle associated
with the Fisher-Thas-Walker flock as a group coset geometry starting from the
dual G;(q)-hexagon. Analyzing Kantor’s construction, the following question
arises in a natural way: is it possible to define new points and new lines in
a generalized quadrangle @ associated with a flock of the quadratic cone, in
such a way that the new point-line geometry H is a generalized hexagon?

For ¢ odd, we prove that the only possibility is that @ is the Kantor
generalized quadrangle constructed in [4] and H is the dual G2(g)-hexagon. If
g # 3", using a twisted cubic of PG(3,q) we obtain an alternative construc-
tion of the dual G,(q)-hexagon similar to the construction of a generalized
quadrangle using a BLT-set ([6] or [11]). For g even, we are able to prove a
strong connection between the existence of H and the (g+ 1)-arcs of PG(3,q)
but the answer is not complete due to difficulties of the same type that arise
when studying BLT-sets in even characteristic.

We would like to express our thanks to S. E. Payne, J. A. Thas and
H. Van Maldeghem for critical remarks on earlier versions of this paper, and
to W. M. Kantor for useful discussions during his visit in Rome. In particular,
Theorem 2.1 generalizes a result of W. M. Kantor (private communication).

2. Generalized hexagons as group coset geometries

Let s,¢ > 1 be natural numbers. We denote by F a set of s+1 elements. Let G
be a group of order s?t3. For any u in F, fix the subgroups A;(u), A2(w), As(u),
Aq(u) of G such that A;(u) < Az(u) < As(u) < Ag(u), where |A;1(u)| = ¢,
|A2(u)| = st, |As(u)] = st? and |A4(u)| = s*t%. Define a point-line geometry
H = (P,L,1) as follows:

P= {I’A4(u)g)A2(u)g)g 19 € G)u € F}

*. The authors are members of G.N.S.A.G.A. of C.N.R. and have partial financial support
by Italian M.U.R.S.T.



BADER AND LUNARDON: GENERALIZED HEXAGONS

L = {[ul, As(u)g, Ai(u)g : g € G,u € F}

where 7 and [u] are symbols and the incidences are ZI[u], A4(u)I[u] and
gl A (u)g for all g € G and u € F, while A;(u)glAiy1(v)h if and only if u = v
and g € A;1(v)h with 7 =1,2,3.

Theorem 2.1 H = (P, L,I) is a generalized hexagon with parameters (s,t)
if and only if, for all distinct ¢, 7, h, m, n in {1,2...,s + 1}, the following
conditions hold:

1) Ay(i)N Ai() =1,

2) As(i) N Al(j)Al(h) =1,

4) Az(2)A2(7) N Ai(h) =1,

5) A(z)N Al(j)Al(h) 1(m) =1,

6) Ax(i) N Av(5)A1(i)Ar(h) = Au(3),

7) Ai1(i) N Ai(5)Ai(h)A1(m)Ai(n) = 1,

8) Ai(3) N Ai(5)Ai(R)Ar(m) Ay (R) = 1,

9) Al(i)Al(j) n Al(J)Al( = Al(i) 1(]):

10) A

Proof. With a direct calculation, we can prove that if H is a generalized
hexagon, then the ten conditions are satisfied.

Conversely, if we suppose that the conditions 1-10 hold, then no circuit
of length less than 12 can exist in H. The point-line geometry H has exactly
(1+1¢)(1+ st + s%t?) points and exactly (s +1)(1 + st + s*t?) lines. Each line is
incident with exactly s+ 1 points, and each point is incident with exactly t+1
lines. Moreover, H contains at least one circuit of length 12, while no circuit
of length less than 12 can exist. Consequently H is a generalized hexagon by
[12] p. 5. ul

By condition 9 of Theorem 2.1, if H is a generalized hexagon then G
cannot be abelian.

Starting from H, we define a new point-line geometry Q(H) in the
following way. The points of Q(H) are I, A3(u)g and g, with g € G and
u € F. The lines of Q(H) are [u] and A,(u)g, with g € G and u € F. The
line [u] is incident with 7 and Aj(u)g for all g in G, while all other incidences
are given by inclusion.

Corollary 2.2 Let H be a generalized hexagon, whose parameters s and t
are equal. Then Q(H) is a generalized quadrangle with parameters (s?,s) if
and only if Ay(u)Az(v) N Ax(w) =1 for all distinct u,v,w € F.

6



BADER AND LUNARDON: GENERALIZED HEXAGONS

Proof. If s = t, the corollary it is an easy consequence of Section 10.1 of
[10]. O

The hypothesis s = t is required in Corollary 2.2, because the point T
is incident with s +1 lines, while the point A3(u)g is incident with ¢+ 1 lines.
If Q(H) is a generalized quadrangle, then the conditions of Theorem 2.1 can
be simplified (see [1]). In [5] W.M. Kantor has given an explicit description
of the subgroups A;(u), As(u), As(u) and A4(u) for the known generalized
hexagons. In [4] W.M. Kantor has proved that if H is the dual G,(g)-hexagon
then Q(H) is a generalized quadrangle when ¢ = —1 (mod 3). Moreover, Q(H)
is the generalized quadrangle associated with the Fisher-Thas-Walker flock of
the quadratic cone (see [13]).

3. (g+1)-arcs

Let F = GF(q) and F' = F U {oo}. In the following, we always denote by G
the group whose elements are those of F2 x F x F2, and whose product is
defined by

(a)c)ﬂ)(al)cl;ﬂl) = (a+al)c+cl+al'ﬂ)ﬂ+/3,)

where a,8,a/,8' € F?, ¢, € F, and o - 8 = o/B7. The center of G is the
set Z = {(0,c,0) : c € F} and the group G = G/Z is elementary abelian.
Moreover, we can regard G as a four dimensional vector space over F. For
each element g of G, let g* be the preimage in G of the 1- -space of G spanned
by § = gZ. If g, h are elements of G, we notice that (g, k) = [g, k] defines a
non singular alternating F-bilinear form on G; if q is even, § > g* defines a
quadratic form associated with ( , ). Thus, G is equipped with a symplectic
or orthogonal geometry.

If [g,h] = 1, then [¢*, A*] = 1. Thus maximal elementary abelian sub-
groups of G are preimages of totally isotropic (or singular) 2-spaces of G.
Therefore a maximal elementary abelian subgroup of G has order ¢°.

Let PG(3,q) be the three dimensional projective space associated with
the F-vector space G. For each u € Fif As(u) = Ax(u)Z, then Ax(u)
is elementary abelian because it is canonically isomorphic to the subgroup
A3(u)/Z of G. So As(u) is a maximal elementary abelian subgroup of G.
Thus, L, = As(u)/Z is a totally isotropic (or singular) line of the projective
space PG(3,4q).

Theorem 3.1 Suppose that H is a generalized hexagon, Aa(u) = Aj(u)Z.
Denote by pu, Ly, o, respectively the point Ai(u)Z/Z !, the line A3(u)/Z and

1. As Z is contained in A4(v), A1(u) N Z = 1. Therefore A1(u)Z/Z is a l-dimensional
vector subspace of G.



BADER AND LUNARDON: GENERALIZED HEXAGONS

the plane A4(u)/Z of PG(3,q). The set & = {p, : u € F} is a (q+1)-arc of
PG(3,q). Moreover, L, is a tangent line of © at p, and a, is the osculating
plane of ¥ at p,.

Proof. Let u and v be two distinct elements of E. By property 9 of Theorem
2.1, if gu € A1(u) and g, € A;(v) then [gu,9s] = (Gu,Gv) = 1 if and only if
gu = 1 or g, = 1. Thus, pL N Y = {p,} where p} is the polar plane of p, with
respect to the polarity of PG(3,q) defined by the F-bilinear form ( , ) of G.

If p, € au, then A;(v) < A;(v)Z < Ay(u). By property 1 of Theorem
2.1, this implies u = v. Therefore, if u and v are different elements of ¥, the
point p, does not belong to a,. Thus, a, N = {p.}.

Let u,v,w be elements of F'. If v # w, then the plane < p,, Ly, > of
PG(3, q) is defined by a subgroup of G of order ¢* containing A;(v) and As(w).
By property 1 of Theorem 2.1, this subgroup is A;(v)As(w). If p, belongs to
the plane < p,, L, > then A;(u) < A;(u)Z < A,(v)As(w). By property 2
of Theorem 2.1, either u = v or u = w. Thus, < p,, L, > NE = {ps,pu}
We have proved that each plane through L, contains at most one point of X
different from p,,. As X contains exactly ¢ points different from p,,, there are
q planes containing the line L,, and a point of ¥ different from p,,. So there
is exactly one plane through L., which contains only one point of . This
implies p_ = a,. Moreover, three distinct points of & are never collinear.

By way of contradiction, we suppose that four points p,, p,, Pw, pz of
are coplanar. Let K be the 3-dimensional subspace of G, which defines the
plane 8 =< py, Py, Pw >. The subgroup K of G, which is the preimage of K,
has order g* and contains the subgroups A;(u), 41(v), A1(w), Ai(z) because
the points py, py, Pw, p= belong to the plane 8.

Let gu, hu € A1(u), gu, hy € A1(v), guw,hw € Ai(w) and suppose that
Ju9vGw = huhyh,€ where £ € Z. We have

JuGvGw h;;l h;l h;;l
= guhy guhy guhy [hogy s hul(hwgy’, Bollhuwgy' s hu) = €.

Therefore, (g.h7')(guh;)(guh]') € Z because G’ is contained in Z.
Hence (guh7')(guh')(gwh') defines the O-vector of G. Thus, the vectors
9uhI'Z, 9,h7  Z, guh3' Z of G are linear dependent. As the points p,, p, and
p,, are never collinear, we have g,h;! € Z or g,h;' € Z or g,h7' € Z. This
implies g, = hu, g» = hy and g,, = h,, because Z < Ay(z) and Ay(z)NAi(y) =
1 for all distinct z and y in F. Then Aj(uw)Ar(v)Ai(w) N hyhyhw Z = hyhyhy,.
Moreover, for h,hy,h,, = 1, we have also proved A;(u)A;(v)Ai(w)NZ = 1.

With the same argument, we can prove that if g,g,9w = huhyhy, then
gu = hu, 9o = hy and g, = h,. Hence, the subset A;(u)A4;(v)Ai(w) of G
has order ¢3. As A;(u), 4;(v), Ai(w) and Z are subgroups of K, we have

8
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K = Aj(u)A;(v)A(w)Z.

The subset A;(u)A;(v)Ai(w)A;(v) is contained in K because A;(u),
Ai(v) and A;(w) are contained in K. Let g, € Ai(u), gu, hy € A1(v) and
9w € A1(w) be elements of G different from 1. Then the element g.g,gu hv =
9ugvhogu(gy", k'] does not belong to A;(u)A;(v)Ai(w) because [g;!, h;'] #
1. Thus, the subset A;(u)A;(v)Ai1(w)Ai(v) of K has order > g% As A;(z)N
Ay (u)A;(v)A1(w)Ai(v) = 1 by property 8 of Theorem 2.1, the subset
Ai(z)A1(u)Ai(v)Ai1(w)Ai(v) has order > ¢*; also, it is contained in the sub-
group K, because A,(z) and A;(u)A;(v)A;(w)A;(v) are subsets of K. We
have the required contradiction because K has order ¢*.

This completes the proof that ¥ is a (¢ + 1)-arc of PG(3,q).

For each u € I, we denote by S, the osculating plane of & at p,2. Let
pu and p, be two distinct points of ¥. Define

C*={< puypw>NBu:w € F,w;éu}
As ¥ is a (g + 1)-arc of PG(3,q), C* is a g-arc of the plane §,. Let C =
C*U{L.,NB,}.

By way of contradiction, we suppose that a line N of 8, incident with
the point L, N B, contains three points of C. Then the plane < N,p, > is
incident with three points of . As the line L, is contained in < N,p, >,
this is impossible. Therefore, each line of 8, contains at most two points of
C. This implies that C is a (g + 1)-arc of §8,. By the definition of tangent of a
(g +1)-arc of PG(3,q), we have proved that the line L, is tangent of L at p,.

If ¢ is odd, L, is the tangent line of ¥ at p,. If q is even, L, is one
of the two tangents of ¥ in p,. In both cases, L, is contained in §,. As the
osculating plane contains exactly one point of ¥, we have o, = 8, because
o, 1s the unique plane containing L, such that o, N T = {p,}. 0

Corollary 3.2 If H is a generalized hexagon with As(u) = A,(u)Z, and
g = p* with p a prime number, then p # 3.

Proof. Suppose p = 3. Thus, ¥ is a twisted cubic and all the osculating
planes of ¥ contain a fixed line L ([8] Section 43). If u,v,w are mutually
distinct elements of F, then < py,Puv,Pw >1= ay N a, N o, = L. Therefore,
the F-bilinear form (, ) has non-trivial radical. As this is impossible, we have
a contradiction. 0

In [4] W.M. Kantor has proved that if H is isomorphic to the dual G5(q)-

2. For g even, the osculating plane at p, is the plane defined by the two tangents of ¥ at
pu; for ¢ odd, ¥ is a normal rational curve and A, is the osculating plane of the normal
rational curve at p, (i.e. the plane through p, with intersection multiplicity 3). For more
details see [8]
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hexagon, then ¥ is a twisted cubic; also, there is a canonical way to construct
the dual G2(g)-hexagon starting from a twisted cubic (see [4] Remark 2).
Thus, we have proved the following corollary

Corollary 3.3 Let g be odd. If H be a generalized hexagon with Aj(u) =
Ay(u)Z, then H is isomorphic to the dual G,(q)-hexagon.

4. The case q odd

In this section we always suppose that g is odd.

Let W (5, q) be the polar space associated with a symplectic polarity of
PG(5,q). Embed the symplectic 3-space W(3,q) in W(5,¢) and let p be a
fixed point of W(5, ¢) such that p ¢ W(3,q) C p* C W(5,q), where ”L” is
relative to W (5, q). We can introduce coordinates in PG(5,q) in such a way
that W(5, q) is the polar space associated with the alternating bilinear form

b((mo, a;ﬂ) $5)) (yo)’Y) 5; yE)) = ToYs — TsYo + - 6~ /3 Y

where ¢, 3,7,6 € F?, a-§ = a6T and B-7 = B+7. If p = (0,0,0,0,0,1), then
p* has equation zo = 0. We can embed W (3, q) in W(5, q) in such a way that
W (3, q) is the 3-dimensional subspace of W(5, q) with equations z¢ = z5 = 0.

The nonsingular collineation 7 defined by the upper triangular matrix

1 a b c d e
01000 c
00100 d
M(a,b,c,d,e) = 00010 —a
0 0001 -b
0 0000 1

fixes W(5,q) and all the subspaces of pt incident with p. We will identify 7
with M(a,b,c,d,e). The group G = {M(a,b,c,d,e) : a,b,c,d,e € F} acts
sharply transitive on the points of PG(5,q) \ p*. Moreover, the map

g =(a,b,e,c,d)— g = M(a,b,c,d,ac+ bd — 2e)

is an isomorphism between G and G (see [11]).

Let o = (1,0,0,0,0,0). Then W(3, g) lies in the 3-dimensional subspace
S = pt Not of PG(5,q). Let & = {r, :u € ﬁ’} be the twisted cubic of S
such that 75 Npt N o' is the osculating plane of ¥ at r, for each u € F. Let
L, be the tangent line of T at r, (u € F). We define a point-line geometry
H(Z) in the following way:

10
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Points:

(1) the point p;

(2) the points different from p but contained in one of the lines < p,r, >
(u € F);

(3) the totally singular planes not contained in p' and meeting one of
the planes < Ly,p > (u € F) in a line;

(4) the points of PG(5,4q) \ p*.
Lines:

(a) the lines < p,7, > (u € F);

(b) the lines not incident with p, and contained in one of the planes
< Lu,p > (u € F);

(c) the totally singular lines not contained in p* and meeting p* in a
point of the lines < p,7, > (u € ﬁ’)
Incidences:

Points of type (2) and lines of type (c) are never incident. All other
incidences are inherited from PG(5,q).

Theorem 4.1 If ¢ = p™ and p # 3, then H(X) is isomorphic to the dual
G2(q)-hexagon.

Proof. If r =(0,0,0,1,0,0) and r,, = (0, 1,u,u?, ~3u?,0), then & = {r,:
U € F} is a twisted cubic of § = p* N ot. Moreover, we can prove with a
direct calculation that the symplectic polarity = of S associated with W(3, ¢)*
is the unique symplectic polarity of § = PG(3,q) with the property that r™
is the osculating plane of ¥ at r for each point r of ¥ ([8], Section 43). Then
L., has equations zo = z; = z3 = 25 = 0 and

L, = {(0, z1, 23, 23,24,0) € § : z4 = 3u’z; — buzy;z3 = —2u’z; + 3uz,}.

For each u € F let

('u,) {§ € G: Tug = Tu};

As(w) = {§e€G:L.g=Lu},

Ay(u) = {§€G:<Ly0>§=<Ly0>},
Aj(w) = {§€G:L,§=Lyo05€E<0r, >}

With a direct calculation, one can prove that

/14(11.) = {M(a,b,au® — 3bu® — du,d,e') : a,b,d,¢’ € F},
Ay(w) = {M(a,b,—2au® + 3bu?,3au® — 6bu,€') : a,b,e' € F},

3. = is defined by the alternating bilinear form f((0, z;, z2, z3, 24, 0), (0, y1, ¥2, ¥3, %1, 0)) =
Z1Ys + T2Ys — Tay1 — T4Y2

11
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Ay(u) = {M(a,b,~2au® + 3bu? 3au® — 6bu,0) : a,b € F},

Aj(u) = {M(a,au,au’® ~3au?0):a € F}.
if u £ oo, and
Ay(o0) = {M(0,b,c,d,e'):b,c,d,e € F},
As(o0) = {M(0,0,c,d,¢'):c,d,e € F},
Ay(o0) = {M(0,0,¢,d,0):cde F},
Aj(0) = {M(0,0,0,d,0):d e F}.

Foru € F and i = 1,2,3,4, let A;(u) be the subgroup of G defined by

Ai(u)={g9€eG:3¢ fi,(u)} For each u in F' different from oo, we have
Ayw) = {(a,b,c,au® ~ 3bu® — du,d) : a,b,¢,d, € F},
As(u) {(a,b, c,~2au® + 3bu? 3au® — 6bu) : a,b,c € F},
Ax(u) = {(a,b, —a*u® + 3abu® — 3b%u, —2au® + 3bu?, Jau® — 6bu) : a,b € F},
Ai(v) = {(a,au,—a*? au®, ~3au?): a € F}.
Moreover

Ay(o0) = {(0,b,e,c,d):b,c,d,e€ F},

As(oo) = {(0,0,e,c,d):c,d,e € F},

Asz(o0) {(0,0,0,c,d) : c,d € F},

Ay(o0) = {(0,0,0,0,d):d € F}.

Let H = (P,L,I) be the point-line geometry defined in Section 2. As
the subgroups A4(u), As(u), A2(u) and A;(u) of G are those associated with
the dual G2(g)-hexagon ([4] or [10] 10.6.2)*, H is isomorphic to the dual
G2(g)-hexagon. Finally the map 6 : H — H(X) defined by

8 : T p,

A4( )g — Tug)
As(u)g — L,g,
As(u)g —< Ly, 0 > §,

DD DD D DD

Ai(u)g —< ry,0 > g,
g+ og.
is an isomorphism. O

H. Van Maldeghem (private communication) has proved Theorem 4.1
using coordinates.

4. The group used by W.M. Kantor is G(o) where (a, b, ¢,d, e)o(a’, ¥, ¢, d',e') = (a+a’, b+
V,e+c +ea—3bd,d+d e+e’); the map ¢ : G(o) — G,(a,b,¢,d,€) — (a,b,c,e,—3d),is
a group isomorphism.

12
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5. BLT-sets and generalized hexagons

Let g = p™ with p an odd prime number.

A BLT-set is a set S of ¢+ 1 totally isotropic lines of W (3, ¢) such that
each totally isotropic line of W(3,q)\ S is concurrent with exactly 0 or 2 lines
of S.

In [6] N. Knarr has given the following beautiful construction starting
from a BLT-set S of W(3, q). Define a point-line geometry Q(S) as follows.
Points:

(i) the point p;

(i1) the lines not containing p but contained in one of the planes
< p,L > where L is a line of §;

(iii) the points of PG(5,q) \ p*.

Lines:

(A) the planes < p, L > where L € S;

(B) the totally isotropic planes of W (5, q) not contained in p* and meet-
ing some < p, L > (L € §) in a line not through p.

Incidences:

The incidences are just the natural incidences inherited from PG(5, q).

The point-line geometry @Q(S) is a generalized quadrangle with param-
eters (¢, q).

For the relation between BLT-sets and flocks of the quadratic cone of
PG(3,q) see [2] and [11]. Moreover, S.E. Payne and J.A. Thas have proved
that for each BLT-set S of W(3,q), there is a flock F of the quadratic cone
of PG(3, q) such that @Q(S) is isomorphic to the generalized quadrangle asso-
ciated with F and vice versa (see [11]).

Suppose g # 3". Let T = {r, : u € F'} be a twisted cubic of PG(3,q)
and let L, be the tangent of & at p,. We suppose that W(3,q) is the sym-
plectic 3-space associated with the polarity m of PG(3, ) such that rT is the
osculating plane of X at the point r, for each u in F.

Let H(X) and H be the generalized hexagons constructed in Section 4
starting from . If § = {L, : u € F}, we can define a point-line geometry
Q(X, S) in the following way. The points of Q(X, S) are the elements of H(X)
at distance zero, three or six from the special point p. The lines of Q(Z,S)
are the elements of H(X) at distance either one or four from p. If z is an
element at distance 1 from p and y is an element at distance 3 from p, then
z =< p,r, > for some u € F and y is a line of p' contained in some plane
< L,,p >. We say that z and y are incident in Q(X,S) if and only if z and
y have a common point, i.e. < z,y >=< p, L, > for some u in F. If z’ is an
element at distance 4 from p and y' is an element at distance 6 from p, then
z' is a totally singular plane and ¥’ is a point not in pt. We say that ¢’ and 3’
are incident in Q(X, S) if and only if 4’ is a point of the plane z’ of PG(5,q).

13
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All other incidences are inherited from those of H(X).
The point-line geometries Q(H) (see Section 2) and Q(Z,S) are iso-
morphic via the map 6 : Q(H) — Q(X,S) defined as follows

§ : I P,

6 : [u—<p Ly>,

§ : As(u)g— L.g,

6 Az(u)g —< Ly,0 > §,
6 g — 0g.

The geometry @Q(X,S) is a generalized quadrangle if and only if S is a BLT-
set of W(3,q) (see [11] Section III). The partial spread S is a BLT-set of
W(3,q) if and only if ¢ = —1 (mod 3) (see [7]). In this case, Q(X,S) is the
generalized quadrangle associated with the Fisher-Thas-Walker flock® of the
quadratic cone of PG(3,q) (see [7]). So we have given an alternative proof of
the following theorem contained in [4], [9] and [13].

Theorem 5.1 Q(H) is a generalized quadrangle with parameters (q°,q) if
and only if ¢ = —1 (mod 3). Moreover, the Kantor generalized quadrangle
Q(H) is isomorphic to the generalized quadrangle associated with the Fisher-
Thas-Walker flock.
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Orthogonally divergent spreads of
Hermitian curves

R. D. Baker G. L. Ebert
G. Korchmaros T. Szonyi
Abstract

By a spread of an Hermitian curve H embedded in the Desarguesian
plane 7 = PG(2,¢*) we mean any collection of ¢ — ¢ + 1 nonabso-
lute lines that partition the g* 4 1 points of H. We call such a spread
orthogonally divergent (0. d. for short) if no line contains the pole of
any line in the spread. The search for orthogonally divergent spreads
of H is a reformulation of a problem posed by A. A. Bruen at Com-
binatorics 90, which in turn is related to the geometric construction
of large sets of independent codewords in the natural linear code asso-
ciated with 7. In this paper we show o.d. spreads exists for any even
prime power ¢ with ¢ = 1 (mod 3), and find o.d. partial spreads of
small deficiency in all other cases. The inherited automorphism groups
are also determined.

1. Introduction

It is easy to construct a spread of the Hermitian curve H embedded in the
Desarguesian plane m = PG(2,¢?). Namely, if P is any point of = \ H, the
q? — q chords of H through P together with P* intersect H in a collection of
q®—q+1 blocks of H that partition its g*+1 points. We thus call these g2 —q+1
lines of 7 a “spread” of H. In this paper we impose the additional restriction
that no line of the spread should contain the pole of any line in the spread.
We think of such a spread, if it exists, as being “orthogonally divergent.”
In general, the problem is to find the largest possible orthogonally divergent
(o.d. for short) partial spread of H.

We first show that an o.d. spread of H exists for any even prime power
gwithg=1 (mod 3). This spread is cyclically generated. We also construct
maximal o.d. partial spreads of H with deficiency 3 for any prime power ¢
with ¢ Z 0 (mod 3). For ¢ = 0 (mod 3) maximal o.d. partial spreads of
deficiency %(q + 7) are constructed. The inherited automorphism groups of
these partial spreads are then determined.
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2. Preliminary results

Let # = PG(2,¢?) denote the Desarguesian projective plane over the Galois
field GF(q?), where q is any prime power. An Hermitian curve H in 7 is the
set of absolute points of an Hermitian (or unitary) polarity of w. It is well
known that any two Hermitian curves are projectively equivalent. If P is any
point of 7, then P1 denotes the polar line of P with respect to the Hermitian
polarity associated with . Similarly, if £ is any line of 7, then ¢* denotes the
pole of £ with respect to this polarity. If P € H, then P+ meets H only in P;
if P ¢ H,then Pt meets H in g+ 1 points. We will call lines of the first type
tangents and those of the second type chords (or secants). If P ¢ H, there
are ¢ + 1 tangents through P (meeting H in the points of P NH) and ¢ — ¢
chords through P.

At Combinatorics '90 in Gaeta A.A. Bruen posed the following problem
concerning Hermitian curves. Let B = {P, P,,..., P,} be a set of t points in
7 satisfying the two properties:

(a) the line P;P; is a chord of H for all 1 # 7,

(b) PANB =0 for alls.

What is the maximum cardinality of such a set B, hereafter referred to as a
B-set for short, and how can we construct such sets?

The motivation for studying this problem is the following. Let p denote
the characteristic of the field GF(q?), and let Cp(n) denote the linear code
over Z, spanned by the rows of the incidence matrix of r, where we assume
the rows are indexed by the lines of 7. Then it is easy to see that the tangent
lines to H, treated as characteristic vectors in Cp(7), are linearly independent
codewords. Now for each point P of a B-set B, construct a codeword wp by
summing the g + 1 tangents to H through P and subtracting P*. Then the
support of wp contains P but no other point of BUH. An easy argument now
shows that {wp : P € B} may be appended to the tangents of H to create an
independent set of codewords of size |B| + |H|. Thus B-sets may be used to
construct “large” independent sets of codewords in a natural geometric way.

Bruen observed that if £ is any chord of H and we define P* = P+ N¢
for any point P € £\ H, then the ¢% — g points of £\ H are partitioned into
pairs { P, P*}. Choosing one point from each pair yields a set B of cardinality
%(q2 — g) that obviously satisfies properties (a) and (b) above. Such a B-set
will be called Lnear since all of its points are collinear.

If B={P,, P,,..., P} is a B-set and we work dually, then B+ = {P},
P, ..., Pt} is a collection of chords of H, any two of which meet in a point
off H by property (a). The intersections of these lines with H thus form a
collection of pairwise disjoint blocks of H (treating H as a 2-design), and we
call B a partial spread of H. As H has ¢ + 1 points, clearly t(g+1) < ¢*+1
and thus ¢t < g2 — g + 1. If this upper bound for |B| is achieved, then B*
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becomes a (full) spread of H which in addition satisfies the property that no
line of the spread contains the pole of any spread line (including itself). Such
a spread of H we call orthogonally divergent.

3. Construction of a maximum B-set

In this section we are going to construct cyclic B-sets of maximum possible
cardinality (or dually, 0.d. spreads) in PG(2,q2). Our construction depends
on the existence of a cyclic linear collineation group G of order ¢ — ¢ + 1
that leaves H invariant. This group G is a subgroup of a Singer group L
of PG(2,4%) and each point orbit under G is a complete (g2 — g + 1)-arc.
Moreover, H may be obtained as the union of g + 1 suitably chosen orbits
under G. Finally, each point orbit under a subgroup of order g2+ ¢+ 1in &
is a Baer-subplane.

Following [1] let us represent PG(2,¢%) by considering GF(q®) as a
vector space over GF(g?). This means that the points are represented by the
elements of GF(¢%) \ {0} = GF(¢®)*, and o, 3 € GF(q®) represent the same
point if and only if /8 € GF(q?). The point represented by a € GF(g®) will
be denoted by (). The lines in this representation are defined by an equation
Tr(az) = 0, where a # 0 is fixed and Tr stands for the trace function from
GF(q®) onto GF(g?).

If w is a generating element of GF(g®), then the group G, the Baer—
subplanes and the complete arcs mentioned above are the following:

G={¢:GF(¢®) — GF(q°) : o(z) = mwi(qz“"”'l), i=0,1,...,4"—q},

Baer(u) = { (wi(qz"q+1)+“) :1=0,1,...4°+¢q} for v=0,1,...,¢* — gq,
Arc(t) = { (wi(q2+q+1)+t) :1=0,1,...4°~q} for t=0,1,...,¢* +¢.

Finally, we can represent an Hermitian curve for each @ € GF(q®)* by putting
H(a)={(z) : Tr(az®*')=0}.

One can easily see that H(a) is left invariant by G. In this section we will be
working with the Hermitian curve H = H(1).

First we investigate the existence of cyclic spreads of H. One may as-
sume that the cyclic group is G above, since any two cyclic subgroups of order
g® — ¢ + 1 are conjugate in the linear collineation group PGU(3, ¢2) leaving
H invariant. Let us recall that HNBaer(0) is a line or an oval accordingly as
q is even or odd. Indeed, if we consider the Baer-involution z — 2%, then it
fixes Baer(0) pointwise and maps H into itself, so the assertion follows from

2] .
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Theorem 3.1 There exists a cyclic spread of H if and only if q is even.
Moreover, the spread is unique if we fix the cyclic group of order ¢ — ¢ + 1.

Proof. We can suppose that the cyclic group is G above. In [1, Cor. 2.4] it
was proved that H is the union of certain arcs Arc(t). It is easily seen that the
orbit of a line under G is a spread of H if and only if each Arc(t) contained
in H meets each line of the orbit in exactly one point. Assume first that a
cyclic spread of H exists. For a point z €Baer(0)NH let £ denote the line of
the orbit passing through z, and let Arc(t) denote the arc containing z. As
the tangents of Arc(t) at z are precisely the lines of Baer(0) ([1, Lemma 1.3]),
£ must be a line of Baer(0). If q is odd or if g is even and £ is different from
Baer(0)NH, then we have a point y € HNZ not in Baer(0). Take u(+# 0) and s
in such a way that y €Baer(u) and y €Arc(s). Since £ is a tangent of Arc(s),
we see, as before, that £ must be a line of Baer(u). Since Baer(0) and Baer(u)
have no common line, we have a contradiction. This shows that ¢ must be
even and £ = Baer(0)NH.

On the other hand, if g is even the orbit of the line £ =Baer(0)NH under
G turns out to be a spread of H. Indeed, £ meets each Arc(t) contained in H
in exactly one point by Theorem 2.5 of [1] . O

Now we are going to decide whether our spread is o.d. or not. We make
use of a particular collineation, namely p : z — z%, which leaves both H
and Baer(0) invariant. Obviously, u has order 3 and permutes the arcs of
type Arc(t) among themselves. One can easily compute the fixed points of u.
Namely, let z# = z with z = w*. Thenig? =4 (mod ¢* +¢% + 1), and hence
2(g®~1) =0 (mod g*+4g2 +1). Here the greatest common divisor of g2 — 1
and ¢* + ¢% + 1 is 3, so the solutions of this congruence mod q* + q% + 1 are
exactly 7 = 0,3(¢* + ¢* + 1), and 2(¢q* + ¢* + 1). Thus u has exactly three
fixed points.

Theorem 3.2 There is a cyclic o.d. spread of H if and only if q is even and
g=1 (mod3).

Proof. By Theorem 3.1 we may assume that g is even and the cyclic spread
is the orbit of £ = HN Baer(0) under G. Let L be the line of PG(g?) containing
the Baer subline £. Let Arc(s) be the orbit of L under G, so Arc(s)N"H = 0.
Observe that ## = ¢, and this implies that (L*)# = L*, hence p leaves Arc(s)
invariant. As G is transitive on the lines of our spread, it is sufficient to check
the condition of orthogonal divergence (Condition (b} in Section 2.) for L;
that is, L should be disjoint from Arc(s).

Suppose first that our spread is not o.d., and hence Arc(s)NL # 0. Now
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Arc(s)NL consists of one or two points. Since u leaves Arc(s)NL invariant
and p has order three, u must fix the points of Arc(s)NL. But u also fixes
Lt €Arc(s)\L, and thus u fixes at least two points of Arc(s). Since |Arc(s)| =
q*—q+1, the comments above imply that u fixes exactly three points of Arc(s)
and hence a cardinality argument shows ¢ =2 (mod 3).

On the other hand, if ¢ = 2 (mod 3), then |Arc(s)| is divisible by 3.
Since u leaves Arc(s) invariant and fixes the point L* of Arc(s), 4 must fix
two other points of Arc(s). As L is left invariant by p and |L| =¢* +1 = 2
(mod 3), p must fix two points of L. But x has exactly three fixed points, and
thus L N Arc(s) # 0, implying our spread is not o.d.

Since g is even, either ¢ = 1 (mod 3) or ¢ = 2 (mod 3), and the
result now follows. d

It should be remarked that the construction given in Theorems 3.1 and
3.2 yields an o.d. partial spread of size (q* — ¢+ 1) when g is even and q = 2
(mod 3). In the next section we discuss a different construction technique
which will generate a larger o.d. partial spread in this case (and other cases).

4. Maximal B—sets of small deficiency

In this section we assume without loss of generality that the Hermitian curve
H has equation z9t! + y?*! 4+ 29+ = (, where (z,y,2) are homogeneous
coordinates for # = PG(2, ¢*). We begin by partitioning the points of H in
a very natural way. We left normalize our point coordinates to get a unique
representation for each point of 7. Letting GF(q) denote the unique subfield
of index 2 in GF(q?), we define R, = {(1,y,2) : y?™' = —(1 + a), 29" = a}
for each element a € F = GF(q) \ {0,1}. We also define U; = {(0,1,2) :
29 = —1} U, = {(1,0,2) : 29*! = —1}, and Us = {(1,y,0) : y?*! = —1}.

Then it is trivial to see that | |J R, | U U, U U; U Us; is a partition of the
acF

points of H. The key ingredient is that the R,’s are “triply ruled,” as we now
describe.

We use [-,-,-] to denote line coordinates in 7, and we normalize line
coordinates from the right. One easily checks that (z,y,2)* = (299,29
because of our choice for H. For each a € F, let H, = {[u,0,1] : v =
a},Va={[%,1,0] : w?*! = —(1+a)}, and D, = {[0,v,1] : v¥*! = —a/(1+a)}.
Thus H, is a partial pencil of ¢ + 1 lines of 7w passing through the point
@1 =(0,1,0) & H. In fact each line of H, meets H in ¢+ 1 points of R,, and
thus H, is a ruling class of R, (which necessarily makes it a partial spread
of H). Similarly, V, and D, are ruling classes of R, which consist of partial
pencils of g + 1 chords of H passing through the nonabsolute points (0,0,1)
and (1,0,0), respectively. To construct a large partial spread of H (which is
hopefully orthogonally divergent), we select exactly one of the above three
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ruling classes for each @ € F. Let AH = {a € F : H, is chosen}, AV = {a €
F :V, is chosen}, and AD = {a € F : D, is chosen}. We think of the H,’s,
V.’s and D,’s as being the “horizontal,” “vertical,” and “diagonal” ruling
classes, respectively.

Since the R,’s are pairwise disjoint, the union of our partial pencils
will clearly form a partial spread of H. To check for orthogonal divergence,
we check that the pole of each line in the partial spread does not lie on any
line of the partial spread. Let [uy,0,1] € H,, and [u,0,1] € H,, be (not
necessarily distinct) lines of our chosen partial spread for some a,,a, € AH.
Then [u,0,1]* = (u§,0,1) and (u{,0,1) - [uz,0,1] = ufu; + 1 # 0 provided
uy # —1/ui. (Note that u; # 0 as a1 # 0.) But

uy =—1/u! = ug+1 = l/'uff"’1
= a; =1/a;.

Thus, if we restrict our selection process so that a, # 1/a; for any
a1,a; € AH (in particular, 1 ¢ AH), then no two lines (distinct or not) from
the horizontal ruling classes chosen will be “orthogonal mates.” In general,
we say that two lines of = are orthogonal mates with respect to H if the pole
of one line lies on the other. Similarly, we see that no two lines of the vertical
ruling classes chosen will be orthogonal mates if a; # —a1/(1 + a1) for any
a1,a; € AV (in particular, —2 ¢ AV), and no two lines of the diagonal ruling
classes chosen will be orthogonal mates if a; # —(1 + @) for any a1,a2 € AD

(in particular, —1 ¢ AD). Analogous computations also show that no two

lines from ruling f:lasses of different types can be orthogonal mates.

The problem now becomes one of partitioning the elements of F' among
the sets AH, AV and AD subject to the above restrictions. Assume first that ¢
is odd. Let Py be a partitioning of the elements of F\{1} = GF(q)\{0,-1,1}
into unordered pairs {a,1/a}. Let Py be a partitioning of F'\ {—2} into
unordered pairs {a,—a/(1 + a)}, and let Pp be a partitioning of F \ { - %}
into unordered pairs {a, —(1 +a)}. We now think of listing the pairs of Py in
one row, say the H row, the pairs of Py in a second row, say the V row, and
the pairs of Pp in a third row, say the D row. Initialize by setting AH, AV
and AD each equal to the empty set. Begin the search by picking one element,
say a, from any pair in the H row, and then eliminating that element from
consideration in any other row. The element a gets adjoined to the set AH.
Next find the unique pair in the V row containing the element most recently
added (a, in this case), and adjoin the other element of that pair (namely,
—a/(1 + a)) to the set AV. This element now gets removed from further
consideration in all rows. Move to the D row, find the unique pair containing
the most recently adjoined element (—a/(1 + a), in this case), pick the other
element of that pair (namely, —1/(1 + a)), and adjoin this element to AD.
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Move back to row H, and continue the process. In this way we choose six
elements of F as follows:

AH : N ~(1+e)
' ! !
(#) L. —elta) (e
AD: —1/(‘1L+a) l}a

If there are still pairs under consideration in the H row, pick any element
a' from such a pair and repeat the process to get another collection of six
elements of F. Eventually, all pairs on all rows will be removed from consid-
eration.

In the above process it is possible to get “short orbits” where the six
elements chosen above are not distinct. However, we will see that this poses
no serious problem.

Theorem 4.1 Let q be any odd prime power.

i) If g #0 (mod 3), there exists an orthogonally divergent partial spread
of H of size ¢> — ¢ — 2 (and hence deficiency 3). Dually, there exists a
B-set of cardinality ¢ — ¢ — 2. This B-set is maximal and all its points
lie on the sides of a self-polar triangle.

ii) If g =0 (mod 3), there exists an orthogonally divergent partial spread
of H of size ¢* —3q— % (and hence deficiency 3'—;1) Dually, there exists
a B-set of cardinality ¢q% — %q - g, all of whose points lie on the sides
of a self-polar triangle. If ¢ > 3 this B-set is maximal.

Proof. (i) Suppose first that g =1 (mod 3). Let € denote a primitive cube
root of unity in GF(q). Then the unordered pair {¢, €?} appears in all three
partitions Py, Py and Pp. Moreover, the selection process described above
generates the short orbit consisting of the two elements € and €.

Without loss of generality we place ¢ € AH and €2 € AV. However,
we could just as easily choose any two of AH, AV, AD and place € in one
set and €® in the other. We also have three other special pairs; namely, { -

2,—%} € Py, {1,—%} € Pv, and {1,—2} € Pp. The selection process (#),
if started with @ = —1, will generate the short orbit consisting of —1,1,
and —2. Again, without loss of generality, we place —1 € AH,1 € AV, and
—2 € AD (although we could just as well place —2 € AH,—3; € AV, and
1 € AD). We now have the same g — 7 distinct elements of GF(g) remaining
on each of the H,V, and R rows, partitioned in different ways into (g — 7)
pairs in each row. No more short orbits are possible, and the selection process
(#) generates ;(q — 7) full orbits of size 6 each. For each such orbit two
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elements are placed in each of AH, AV, and AD. Of course, in any given row,
some pairs may have neither element selected (although those elements will
be selected in other rows).

We thus are able to partition all ¢ — 2 elements of F' among the sets
AH, AV, and AD subject to the previously mentioned restrictions. Therefore
we have an orthogonally divergent partial spread of H of size (g —2)(¢+1) =
q*>— g— 2. Taking the pole of each such spread line, we get a B-set of the same
size. Since every line in our partial spread passes through (0, 1,0),(0,0,1), or
(1,0,0) as previously discussed, every point of the B-set lies on one of the
lines (0,1,0)* = [0,1,0],(0,0,1)* = [0,0,1], or (1,0,0)* = [1,0,0]. These
three lines clearly form the sides of a self-polar triangle. It should also be
noted that the subsets of size ¢ + 1 in the B—set which are the poles of any
ruling class of some R, are Baer sublines of one side of this triangle. Finally,
this B—set is clearly maximal since, dually, the only points of H uncovered
by the partial spread are Uy U U, U Us. The only chords of H meeting H in
a subset of these uncovered points are [1,0,0],[0,1,0], and [0,0,1], none of
which may be added to the partial spread if we want to maintain orthogonal
divergence.

Now suppose that ¢ =2 (mod 3). The argument proceeds exactly as
above except that now there are no primitive cube roots of unity in GF(q).
Thus the only short orbit under the selection process (#) is —% — 1 — =2,
The ¢ — 5 points of F'\ { - 51, —2} are partitioned into g(g — 5) orbits of
size 6 by (#), and we are able to construct an orthogonally divergent partial
spread of H if size > — ¢ — 2 in a completely analogous fashion.

(ii) Finally suppose that ¢ = 0 (mod 3). Since 1 = —2 = —7 in this
case, we cannot use a full ruling class (of any one of the three types) for R;.
Without loss of generality we try to use as many lines as possible in the ruling
class D;. Let [0, vy, 1], [0, vs, 1] € Dy, where v¥t! = 1 = v2** Then [0, v, 1]* =
(0,v7,1) and (0,v7,1) - [0,v2,1] = viv; + 1 # 0 provided v, # —1/v{. Thus
we can choose 1(g + 1) lines from D; so that no two are orthogonal mates.
Namely, we may as well choose [0, v, 1], wherev = 1, 49", g2e-1), ., g(a-1)*/2
for some primitive element 3 of GF(q?). There are no primitive cube roots
of unity in GF(q) when ¢ = 0 (mod 3), and the ¢ — 3 points of F \ {1}
may be partitioned into (g — 3) orbits of size 6 by (#). Thus we are able to
construct an orthogonally divergent partial spread of H of size ¢* — 3¢ — §
in this case. If ¢ = 3, we may add either [0,1,0] or [0,0,1] (but not both)
to obtain a larger orthogonally divergent partial spread. For ¢ > 3 a trivial
counting argument shows that the only lines which could be added to the
partial spread are [0, 0, 1], [0, 1,0],[1,0,0] and the remaining lines of D;, but
none of these could be added if we want to retain orthogonal divergence. [J
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It should be noted that for ¢ = 3 the above construction generates a
B-set of size 2. As indicated in the proof above, this B-set can be extended by
adding either (0,1,0) or (0,0,1), but not both. The resulting (linear) B-set
of size 3 is still not maximal, and a fourth point off the line [1,0,0] may be
added. An exhaustive search shows that no B-set of size greater than 4 is
possible for ¢ = 3, although the general upper bound is 7 when ¢ = 3.

When q is even, similar constructions are possible. We still have a short
orbit when ¢ =1 (mod 3) because of the existence of primitive cube roots,
but the elements 1,—2, and —1/2 are no longer in FF = GF(q)\ {0,—1}. We
state the following theorem without proof.

Theorem 4.2 Let ¢ > 2 be any even prime power. Then there exists an
orthogonally divergent partial spread of H of size q> — ¢ — 2. Dually, there
exists a B-set of cardinality q* — q — 2, which is maximal and all of whose
points lie on the sides of a self-polar triangle.

Example 1: Let ¢ = 9 and 7 = PG(2,81). We choose f(z) = z*+ 2>+ 2
as our primitive polynomial for GF(81), and let B denote a (primitive) root
of f.

As a convenient shorthand notation, we let < represent the field element
3* and we let * denote the zero element of GF(81). Using the selection process
(#) we obtain AH = {10,60}, AV = {30,50}, and AD = {20, 70}. Since
g = 0 (mod 3), we also choose as part of our partial spread the lines of
D, whose line coordinates are [x,0, 0], [, 8, 0], [x, 16, 0], [, 24, 0] and [*, 32, 0].
The resulting maximal B-set, constructed as described above, of size 65 is

{(0,%, 7),(0,%,15),(0,x,23),(0,*,31),(0, *,39), (0, x,47), (0, *, 55), (0, *, 63),
(0,%,71),(0,%,79),(0,%, 2),(0,x,10),(0,x,18),(0,*,26), (0, *,34), (0, *, 42),
(0, %,50), (0, %,58), (0, x,66), (0, x, 74), (0, 6,%),(0,14,x),(0,22, ), (0,30, *),
(0,38,*),(0,46,*),(0,54,*),(0,62,*),(0,70,*),(0,78,*),(0, 1,%),(0, 9,x),
(0,17, %),(0,25,%),(0,33, %), (0,41, %), (0,49, ), (0,57, %), (0,65, %), (0,73, %),
(*’ 0’ 1)’ (*’ 0’ g)’ <*’ 0’ 17)’ <*’ 0’ 25)7 (*’ 0’ 33)’ (*’ 0’41)’ <*’ 0’ 49)’ (*’ 0’ 57)7
(*,0,65),(*,0,73),(x,0, 6),(%,0,14),(x,0,22),(x,0,30),(*,0,38),(x,0,46),
(*,0,54),(x,0,62),(x,0,70),(x,0,78),(x,0, 0),(x,0, 8),(x,0,16),(*,0,24),
(%,0,32) }.

Example 2: Let ¢ = 11 and # = PG(2,121). We choose f(z) = 2z +z + 7 as
our primitive polynomial for GF(121), and let § denote a (primitive) root of
f. Using the same shorthand notation as in the above example, we see that the
selection process (#) generates the sets AH = {24,12,48}, AV = {0, 84,36}
and AD = {96,72,108}. Note that a “short orbit” in this case is 24 — 0 — 96,
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as —; = 3% and —2 = 3%. The resulting maximal B-set of size 108 is

{(0,%,4):%=8,18,28,...,118} U {(0,%):%=9,19,29,...,119}
{(0,%,7):7=6,16,26,...,116} U {(0,7,%)::=2,12,22,...,112}
{(0,2,%) : e =4,14,24,...,114} U {(0,2,%):2=1,11,21,...,111}
{(%,0,i):4=2,12,22,...,112} U {(%,0,i):4=1,11,21,...,111}
U {(%,0,i):7=4,14,24, ..., 114},

Example 3: Let ¢ = 13 and # = PG(2,169). We choose f(z) = z*+z +2 as
our primitive polynomial for GF(169), and let B denote a primitive element
of the field. The process (#) generates the sets AH = {70, 56,42,28}, AV =
{0,112,14,154} and AD = {98,140,126}. The short orbits this time are
70 — 0 — 98, where —2 = ™, and 56 — 112, where §° and ''? are
primitive cube roots of unity. The maximal B-set of size 154 thus constructed
is {(0,%,2):1=17,8,9,10 (mod 12)}U {(0,7,%):1=5,8,2,3 (mod 12)}U
{¥,0,):=5,3,2 (mod 12)}.

cC CcCcC

5. Automorphism groups of the maximal B-sets

In this section we compute the inherited automorphism groups of the max-
imal B-sets constructed above. Once again we assume that H has equation
z?t! + y9t1 4 291 = 0, and we let PTU(3,4?) denote the full (semilinear)
unitary group. That is, PT'U(3, ¢?) is the stabilizer of H in PT'L(3, ¢%). By the
inherited automorphism group of a B-set B we mean H = {a € PI'U(3,¢%):
B* = B}. Throughout this section H will denote the inherited automorphism
group of some maximal B-set B as constructed above. We represent elements
of PTL(3,4%) by a field automorphism o of GF(q?) together with a nor-
malized nonsingular 3 x 3 matrix M over GF(q?). We think of an element
(o, M) of PTL(3,¢%) as acting on normalized row vectors by first applying
o to each component and then post multiplying by M. The resulting row
vector is then normalized. The group operation in PTL(3,4¢?) is given by
(o1, M1) - (02, M3) = (0102, M{* M;), where M denotes the matrix obtained
by applying o to each entry of M.

Let A be the self-polar triangle whose sides contain all the points of
the B-sets constructed in the previous section. Thus the vertices of A are

{(1,0,0), (0,1,0), (0,0,1)}.

Theorem 5.1 Let G be the pointwise stabilizer of the vertices of A in
1 0 0

PTU(3,q%). Then G = {(0,M) : 0 € Aut(GF(¢*)),M = (0 A 0) for

0 0 6
some A, § € N}, where N = {z € GF(¢*) : 2%t! = 1}. In particular,

C % (Zors X Lora) > Aut(GF ().
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Proof. It is easy to see that the only elements of PT'L(3,¢?) fixing each
vertex of A are of the form (o, M), where ¢ € Aut(GF(¢%)) and M =

1 0 0

(0 A 0] with A\,§ € GF(g*)*. Consider the point (1,y,0) of H, where
0 0 ¢

y?*! = —1. Then for (1,y,0)- (o, M) to be in H we must have (Ay”)#*! = —1

and hence A € N. Using the point (1,0, z) of H, where z%t! = —1, we simi-

larly show § € N. Finally, if (z,y, z) is any point of H, it is now easy to show

that (z,y,2)- (o, M) € H and the result follows. m

Corollary 5.2 Let Gy be the setwise stabilizer of the vertices of A in
PT'U(3,¢%). Then Gy = G>1S3. In particular, o(G,) = 12e(q + 1)?, where
q = p°® for some prime p and some positive integer e.

Proof. Let A be a permutation matrix corresponding to some permutation
of the vertices of A. Let (o, M) € G as described in the above theorem. Then

(id, A™) - (o, M) - (id, A) = (0, A" MA) € G

since M is diagonal. The corollary now follows easily. O

Theorem 5.3 Let ¢ > 3 be any prime power, and let B be a B-set as
constructed in the previous section. Let o be an element of PTU(3, ¢%) that
leaves B invariant. Then a permutes the sides (and hence the vertices) of A.

Proof. Let 4, = [1,0,0],4; = [0,1,0] and £, = [0,0,1] denote the three
sides of A. Since ¢ > 3, the construction of the last section guarantees that
B contains at least four points on £;. Since the points of B all lie on the sides
of A, we must have £} = 4; for some 7,0 < 7 < 2. Similarly, the construction
guarantees that B contains at least four points on £;, and hence {5 = {; for
some j # 1,0 < j < 2. Since P(*)* = (P*)* for any point P and since A is
self~polar, the result now follows, m

Corollary 5.4 If H is the inherited automorphism group of B, then H < G
provided q > 3.

Theorem 5.5 Let ¢ > 2 be a prime power with ¢ #0 (mod 3). Let Go =
{(e,M) € G: 0 =1d or o0 = 0,}, where G is the pointwise stabilizer of the
vertices of A as described above and o, is the automorphism of GF(q?) that
maps z — z9. Then Gy < H.
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1 00
Proof. Let (o,M) € Go. Write M = [0 X 0

0 0 ¢
points of B are of three types. Suppose first that a € AH. Then B will contain

g + 1 points corresponding to this element a, namely the poles of the lines
of H, = {[u,0,1] : u?*! = a}. Since [v,0,1]* = (u%,0,1) ~ (1,0,1/u%),
these g+ 1 points will be {(1,0,2:) 1z € GF(¢%), 29! = l/a}. Recall that a €
GF(q) witha # 0,—1. Now (1,0, 2)-(o, M) = (1,0,2°)M = (1,0,82°), where
(827)7t! = §9+1(29%1)" = 1/a as o = id or o = 0. Hence (1,0,2)- (o, M) € B.

Similarly, if @ € AV, the ¢ + 1 points of B corresponding to a are the
points {(1,y,0) : y?*' = —1/(1 + a)}. If @ € AD, the corresponding ¢ + 1
points of B are {(0,1,2) : 22! = —(1 + a)/a}. In both cases it is easily seen
that Go leaves each such set of points invariant. As ¢ # 0 (mod 3), B is
the union of full Baer sublines, each of which is one of the above three types.
Hence Gy < H. [

for some A\, 6 € N. The

Theorem 5.6 Let ¢ = 3° for some integer e > 2. Then H contains an iso-
morphic copy of the dihedral group of order 2(q + 1).

Proof. Sinceg=0 (mod 3), B contains the poles of the “half ruling class”
3Dy ={[0,v,1,]:v = 1,891, g%a-1)  B-17/2} where B is a primitive
element of GF(¢?). This set of poles is By = {(0,1,2) := 1,891,821, ..,
Bla-17/2} 1t is easy to see that (o,, M) leaves By invariant for any normalized

10 0
matrix of the form M = [ 0 A 0 , where A € N. The proof of
0 0 Mg 1/2

the previous theorem shows that each such map, being an element of Gy,
also leaves B \ By invariant. Similarly, every collineation of the form (:id, M’),

1 00
where M' = (0 A 0) for some A € N, leaves By and B \ By invariant. It
0 0 A
is a straightforward exercise to show that these 2(¢+ 1) maps form a dihedral
group. - O

We now address the question of determining which permutations of the
vertices of A are elements of H. First consider the permutation 7 = (123).
Recall that for each @ € AH, the corresponding g+1 points of B are {(1, 0,2):

z € GF(¢?),2%" = l/a}. Similarly, the ¢ + 1 points of B corresponding to
some a € AV are {(1,y,0) : y7*! = —1/(1 + a)}, and the ¢ + 1 points
of B corresponding to some a € AD are {(0,1,2z) : 29! = —(1 + a)/a}.
Apply 7 to each type of point. We obtain (1,0,2)" = (2,1,0) ~ (1,1/2,0),
where (1/2)™' = q; (1,%,0)" = (0,1,y), where y?*! = —1/(1 + a); and
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(0,1,2)" = (2,0,1) ~ (1,0,1/z), where (1/2)**' = —a/(1 + a). Hence 7 € H
if and only if

a€ AV=> —(l1+a)/a€ AD

{aEAH=> —(1+a)/a€AV}
a€ AD=> —(1+4+a)/a€ AH

But as one can easily deduce from the selection process (#), these conditions
are all satisfied precisely when ¢ =2 (mod 3).

A completely analogous argument shows that in general no other per-
mutation on the vertices of A is in H, independent of ¢, although for certain
small values of ¢ (such as ¢ = 4) H may contain another permutation. Thus,
combining all the results of this section, we have the following.

Theorem 5.7 Let q > 3 by any prime power, and let B be a maximal B-set

as constructed in the previous section.

(i) Ifg=0 (mod 3), B admits an automorphism group isomorphic to
Zoir>< Lo,

(ii) Ifg=1 (mod 3), B admits an automorphism group isomorphic to
(Zgt1r X Lg1)>Zo.

(iii) Ifg =2 (mod 3), B admits an automorphism group isomorphic to
(Zgsr X Lgs1)>Ze.

0 0 1
Proof. We only need concern ourselves with part (iii). Let A = ( 10 0)

01 0
be the permutation matrix corresponding to the permutation (123). Let oy =
(id, A) and a; = (04, I), both of which are elements of H in this case. Thus H
contains the element a = (o,, A) of order 6. Since a normalizes the subgroup

1 00
{ id,] 0 A 0 W NS N} of H, the result follows. O
0 0 §

Since H < G, for all ¢ > 3, where o(G;) = 12e(q + 1)* with ¢ = p°,
there is not much room for H to grow. In fact, except for some small values
of ¢ as previously indicated, the groups discussed in the above theorem are
the full inherited automorphism groups.

6. Concluding remarks

We have shown that maximum B-sets (of size ¢° — g + 1) exist for ¢ even,

=1 (mod 3). The construction is based on the existence of a cyclic o.d.
spread of the Hermitian curve H in this case, and the resulting B-set admits
a linear cyclic automorphism group acting transitively on its points. Such
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B-sets are (q% — g + 1)~arcs. Moreover, cyclic o.d. spreads of H exist only for
geven,g=1 (mod 3).

For all other values of g we have not been able to construct maximum
B-sets. It is unknown if such exist. However, we have constructed maximal
B-sets of deficiency 3 for g even or odd, provided ¢ # 0 (mod 3). The
points of these B—sets lie on the sides of a self-polar triangle, and they admit
linear automorphism groups isomorphic to Zg41 X Zgt1. For ¢ > 3 and ¢ =0
(mod 3), maximal B-sets of deficiency (g + 7)/2 have been constructed, all
of whose points again lie on the sides of a self-polar triangle. This time the
inherited linear collineation group is only Zg41.

It should be mentioned that in this paper the maximal B-sets of positive
deficiency were constructed so that the points were distributed as evenly as
possible among the three sides of a self-polar triangle. One could easily modify
the selection process (#) to produce “unbalanced” B-sets. For instance, we
could construct maximal B-sets (of the same cardinalities as discussed above)
in which all points lie on two sides of the self-polar triangle for ¢ even and for
g =0 (mod 3). For ¢ odd with ¢ # 0 (mod 3) the remaining side would
be used for only one Baer subline. Such B-sets would admit the same linear
collineation groups as described in the above paragraph.
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Lifts of nuclei in finite projective
spaces

A. Blokhuis F. Mazzocca *

Abstract

We present a synthetical construction of the lifting process introduced
in [1] and apply this process to obtain a new result on the structure
of sets in the plane admitting the maximal number of nuclei.

1. Introduction

Let B, be a set of ¢" ! + ¢ 2 + ...+ g + 1 points, not all on a hyperplane
in the n-dimensional projective space PG(n,q) over the Galois field GF(q),
n > 2. A point not in B, is called a nucleus of B, if every line through it
meets B, (exactly once, of course). The set of all nuclei of B, is denoted by
N(B,). The following two fundamental results are well known.

Result 1.1 (Segre-Korchmadros, (7]) If a, b, ¢ are three non-collinear nuclei of
B,., then the points of B, on the lines ab, bc, ca are collinear.

Result 1.2 (Blokhuis-Wilbrink, [3]) If B, is an affine set (i.e. it is contained
in the complement of a hyperplane), then |N(B,)| < ¢ — 1.

The proofs of both the previous results have been given by the authors
in the two dimensional case, but it is straightforward to see that they work in
arbitrary dimensions. The original proof of Result 1.2 surprisingly does not
use Result 1.1.

In the plane case, an elementary derivation of Result 1.2 from Result
1.1 has been obtained in [1] by using a process called “lifting”. In this note we
present in the general case a synthetical construction for this lifting process,
only using Result 1.1 and Desargues’ Theorem. The same construction is
shown to be possible in a more general context. Further, we apply this lifting
procedure, and the Result 1.3, in order to obtain a new result on the structure

*. This author gratefully acknowledges for their support the Italian M.U.R.S.T. and
C.N.R.(G.N.S.A.G.A.).
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of sets B, admitting the maximal number of nuclei.
We recall that it is conjectured [1] that the only examples of pairs
(B2, N(B,)) with |N(B,)| = q¢ — 1 are the following two.

Example 1 B, = (M \ {z})U {y}, M alinein PG(2,q) and z € M,
y € PG(2,9)\ M.

In this case N(B;) consists of the ¢ — 1 points other than z,y on the
line zy.

Example 2 B, U N(B,) consists of the ten points of a Desargues
configuration in PG(2,5), where N(B;) is one of the triangles plus the center
of the perspectivity.

The characterization of all sets B, with the maximal number of nuclei
seems to be a very hard problem. A useful result is the following.

Result 1.3 (Blokhuis-Mazzocca, [1]) If |[N(B;)| = ¢ — 1, then no line in
PG(2,q) intersects B,UN(B,) in 1 mod p points, where p is the characteristic
of GF(q). In particular B, U N(B,) has no one-secant lines. Also if p = 2,
N(B,;) = ¢ — 1, then N(B;) is a maximal quasi-odd set (i.e. an affine set
whose line intersection numbers are zero or odd) and B; U N(B,) is an even
set.

For more results and generalizations of the previous setting we refer the
reader to [1] [5] and [6].

2. Main Results

In this section we use the notation introduced in Section 1 and denote by ab
the line through two points ¢ and b. We set o = PG(n, q) and consider « as
a hyperplane of PG(n + 1, q).

Proposition 2.1 Let B, be such that N(B,) # 0. Let v be a point in PG(n+
1,¢)\ a and denote by T', the cone projecting N(B,) from v. The relation ~
defined in C, =T, \ (a U {v}) by

(1) ¢ ~ y & either z = y or the line through z,y meets a in a point of
B,

is an equivalence relation.

Proof. As the relation ~ is obviously reflexive and symmetric, we only
have to show its transitivity. Assume z,y, z are three points in C, such that
z ~y ~ z. We can suppose z,y, z non-collinear, otherwise  ~ z trivially. If
z' = zvNa, y' = yvNa, z' = zvNa, then the points of a given by 2" = zyNz'y’,
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z" =yzNy'?, y" = zz N 2'y’ are collinear by Desargues’ Theorem. Now as
2" and z" belong to B,, also y" is on B,, by Result 1.1 applied to the three
non-collinear nuclei z',y’, z'. It follows that  ~ z, finishing the proof. |

The next proposition is an easy consequence of the previous one and
the definition of I',,.

Proposition 2.2 The set C, can be partitioned into equivalence classes with
respect to relation ~ and the following properties hold:

(2) every two points in C, collinear with v are in different equivalence
classes;

(3) every equivalence class has the same size as N(B,).

In the following a point set D in PG(n + 1,q) \ a is called a v-lift of
N(B,) if D is an equivalence class with respect to the relation ~, for some
point v € PG(n+1,q9) \ a.

We remark that Result 1.2 is now an immediate consequence of Propo-
sitions 2.1 and 2.2. Actually, if we assume B, affine and consider an (n — 1)-
dimensional subspace S,_1 in a missing By, then every n-dimensional sub-
space S, through S,_, intersecting a fixed v-lift D of N(B,) meets D exactly
once. As there are at most ¢ — 1 of such subspaces S, (cf. Proposition 2.1),
Result 1.2 follows from (3) of Proposition 2.2.

Proposition 2.3 Assume |N(B;)| = ¢— 1 and B,(C PG(2,q)) not of type
(M\{z})U{y}, M alineand z € M,y ¢ M (as in Example 1). Then B,
has the following property:

(4) every point of B, is on at least one line meeting N(B,) in more than
one point,

Proof. If B, contains a point on g—1 tangent lines (i.e. 1-secants) to N(B,),
then B, is contained in the union of two lines, say L and M. Let a1, a; be
two points in N(B;) and assume that the line a,a; meets B, in a point c3 of
L. If a3 is a nucleus not collinear with @,, a;, then the points ¢; = aza; N By,
C2 = a3y N By are forced to belong to L. Actually, ¢;, c2, ¢c3 are contained in
LUM and are collinear by Result 1.1. It follows that the set B, of points of B,
which are on at least one line containing more than one nucleus is contained
in L.

Now, let b be a point of B; on M other than L N B;. As there are ¢ — 1
lines through & containing a nucleus of B, we have |B,| = 1. It follows that
B, is of type (M \ {z}) U {y}, a contradiction. o
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Proposition 2.4 Assume B, is affine with property (4) and |N(B,)| = ¢—1.
Then no v-lift of N(B,) is contained in a plane.

Proof. Assume a v-lift D of N(B;) is contained in a plane 5 and set M =
a N . Then every point in By \ M is on ¢ — 1 tangent lines to N(B;), a
contradiction. a

Proposition 2.5 Assume |N(B;)| = q — 1, B; affine and q even. If N(B;)
contains more than gq/4 — 3 collinear points, then all points in N(B,) are
collinear, that is B; is as in Example 1.

Proof. We can assume that B, has property (4) and let L be a line con-
taining the maximum number A of collinear points in a v-lift D of N(B,).
Note that h is also the maximum number of collinear points in N(B,). By
Prop. 2.4 we can find a line M skew to L and intersecting D in at least two
points. As D is a quasi-odd set, by Result 1.3, we have |D N M| > 3.

Now, a plane through M and a point in L N D contains at least three
points of D\ (LN M) and so

4h+3<q—-1;
that is,

(5) <21

>

It follows that, if h = q/4 — 1, then ¢ > 16. Now, under the assumption
h = q/4 —1, we have that every plane through M and a point in L N D must
meet D in a projective subplane of order 2 and every line of such a subplane
meets B; in a point. Moreover, all points of B,, other than M N a, obtained
in this way are distinct. It follows that

2+6(3-1)<|Bil=q-1,

i.e. ¢ < 10, a contradiction. So we can conclude that h < g/4—1 and, because
h must be odd, we have h < g/4 — 3, finishing the proof. a

We remark that Prop. 2.5 improves the following result of A.A. Bruen,
in case |[N(B;)| = ¢ — 1 and ¢ even.

Result 2.6 (Bruen, [4]) If N(B,) contains more than ¢/2 collinear points,
then all nuclei of B, are collinear.

34



BLOKHUIS AND MAZZOCCA : LIFTS OF NUCLEI

We conclude this note observing that our above defined lifting process
may be useful in a more general setting, as specified in the following.

Recently, J.W.P. Hirschfeld and G. Kiss introduced the notion of a
tangent set of a fixed point set B in PG(n,q). It is defined as a point set
T(B) in PG(n,q) such that the line joining any two points of T(B) is a
tangent to B. Note that, for a set B,, the set N(B,) of its nuclei is a tangent
set to B,. Also, in order to define a v-lift of N(B,), we did not use the fact
that every tangent to N(B,) meets B, exactly once. So if we assume that a
tangent set T'(B) satisfies the following property

(6) if a1, a2 and a3 are non-collinear points in T(B) and b3 € a1a. N B,
b, € azaz N B, then b, = aza; N b3b; is a point on B,

then a lifting procedure for T(B) can be done in the same way as for a set of
nuclei. For example, using the lifting process, if we assume that B is affine and
T(B) satisfies property (6), then it can be easily shown that |T(B)| < ¢ —1,
as in the Blokhuis-Wilbrink result.
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Large minimal blocking sets, strong
representative systems, and partial
unitals

A. Blokhuis K. Metsch

Abstract

The main result is that the size of a maximal strong representative
system (a set of flags with the property that every flag point only
occurs on its own flag line) in PG(2,q), is not between ¢ + 1 and
g+ 3+/q and is not equal to q,/g (g > 49). Hence, for g > 25, there are
no minimal blocking sets of size ¢,/g.

1. Introduction

Let II be a projective plane of order q. A subset B of II is called a blocking set
if B meets every line but contains no line. A blocking set is called minimal
if it does not contain a smaller blocking set. This implies that through every
point of a minimal blocking set there is a tangent. For a minimal blocking set
B we have the following upper and lower bounds due to Bruen [2] and Bruen
and Thas (3].

g+ Va+1< B <qv/g+ 1.

Here we concentrate on the upper bound, so we study large minimal blocking
sets.
A flag of I is an incident point-line pair. A set

S={(P,h),....(Ps, 1)}
of flags is called a strong representative system, if
Peliji=j.

For the size s of a strong representative system &, it was shown by Illés,
Sz6nyi, Wettl [4] that s < ¢,/g+1, with equality iff S consists of the incident
point-tangent pairs of a unital. We denote the set of points occurring in a flag
of § by P(S) or simply S and the set of lines by 4(S). Points in P(S) and
_ lines in 4(S) are called special and other points and lines ordinary. A strong
representative system is called mazimal if it is not part of a larger strong
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representative system. A minimal blocking set B gives rise to a maximal
strong representative system if we associate to each point P € B the flag
consisting of P and a tangent through P. It was shown by Illés, Szényi, Wettl
(4] in the desarguesian and by Wettl [5] in the general case that a maximal
strong representative system of size ¢ + 1 either has all points collinear or all
lines concurrent. Notice that a maximal strong representative system cannot
have size less than ¢ + 1. In this note, we obtain the following results.

Theorem 1.1 In PG(2,q), there are no maximal strong representative sys-
tems S with ¢+ 1 < |§]| < ¢+ 3/4.

Theorem 1.2 If ¢ > 49 is a square, then a strong representative system of
size q/q is part of a unital. Consequently, there is no minimal blocking set

of size q./q.

A partial unital is a set U of points such that every point of U/ lies on a
tangent and no line contains more than /g + 1 points of /. Again we can
get a strong representative system from a partial unital. We say that a strong
representative system is (part of) a unital if the flags are (a subset of) the
incident point, tangent pairs of a unital.

Theorem 1.3 If ¢ > 25, then a partial unital of size q\/q — 1 is either a
minimal blocking set or part or a unital.

In the desarguesian case we can do better if ¢ is odd.

Theorem 1.4 For odd q > 25, a partial unital of size g\/g — 1 in PG(2,q)
is part of a unital.

2. Small strong representative systems

In this section, we shall obtain a lower bound on the size of a maximal strong
representative system using the following recent result on nuclei. A nucleus
of a set S of points in a projective (or affine) plane, is a point P ¢ S such
that every line on P meets S.

Result 2.1 (A. Blokhuis [1]) A set S of size ¢ + a in AG(2, q) has at most
a(q — 1) nuclei.
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Remark. Note that the same bound holds for a set S in PG(2,q) if
there is a line missing S.

Theorem 2.2 Suppose that S is a maximal strong representative system of
PG(2,q) with q + a elements. Then either a = 1 or q < 2a(2a — 1).

Proof. Assumethat a > 1 and ¢ > 2a(2a — 1). Recall that a point or a line
is called special if it occurs in some flag of S and ordinary otherwise. Note
that @ > 1 implies that not all points on a line, or all lines on a point can
be special. It is also not possible that all lines have a special point, since in
this case P(S) would be a blocking set and we would have ¢ > 1 + ,/g by
[2]. It follows from the above remark that P(S) has at most a(q — 1) nuclei.
Since the strong representative system is maximal, every point that is not on
a special line must be a nucleus of P(S).

We call a point covered, if it lies on a special line. Let b be the maximum
number of special lines on a point, and choose a point P that is on b special
lines. Then each ordinary line on P has at least ¢ — (¢+ a — b) = b— a points
that are not covered. Each such point must be a nucleus of P(S). Hence
(g+1-b)(b—a)<a(g—1),s0

f(d):=(g+1-b)(b—a)—a(g—1)<0.
Since
f(2a+1)=f(g—a)=(a+1)(q—2a)—a(g—1)=g—a(2a+1) >0,

it follows that < 2ao0orb>q—a+ 1.

Assume that b < 2a. Let M be the set of covered points, and for X € M,
denote by rx the number of special lines on X. Since there are g + a special
lines, we have

Y rx=(g+a)(g+1)

XeM
and

%TX(TX -1)=(g+ea)g+a-1)

In view of rx < bfor X € M, it follows that

|M| = ZT)(—Z(T)(—I)

< (g+a)g+1) - 5la+ag+a~1)

Since the points not in M are nuclei and since the number of nuclei is at most
a(qg — 1), we have |M| + a(g ~ 1) > ¢°* + ¢ + 1. Hence

(q+a)(q+1)—%(q+a)(q+a—1)+a(q—1)2q2+q+1.
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It follows that ¢ — q(2ab—2a+1)+a(a—1)+b < 0. Hence g < 2ab—2a +1.
But b < 2a and ¢ > 2a(2¢a —1),50 ¢ > 2a(2¢ — 1)+ 1 > 2ab—2a+ 1, a
contradiction.

Hence b > g+ 1 —a. Dually, there is a line [ with at least g+ 1 —a special
points. Let P be a point on b special lines [;,...,l,. Then P ¢ [ (indeed, if P
were in [, then there would be at least 2b special points, b on ! and b on the
special lines on P). Since a > 1, there must be an ordinary line g on P.

Assume that [ has an ordinary point G not on g. Choose a point @ on
¢ that is not covered (there are at least ¢ + 1 — 2a choices for @). Since S
is a maximal strong representative system, the line G must have a special
point. This point is not on [. Hence there are at least ¢ + 1 — 2a special points
not on I, and at least ¢ + 1 — a special points on [. This is too much.

Hence every point of ! other than ! N g is special, so g N ! must be an
ordinary point. Since this holds for every ordinary line on P, it follows that ¢
is the only ordinary line on P. Hence P lies on n special lines 1,..., 1, with
special points I N ;. Every other special pair must be of the form (X, z) with
X =1ng and z # l. But there can be at most one such pair in §. This
contradicts a > 1. a

3. Large strong representative systems

Throughout this section §& denotes a strong representative system in'II, a
projective plane of order g, with s = q,/g + 1 — d elements, where d is called
the deficiency of S. For every line [, we set ki = |[INP(S)| and d; = \/g+1— k.
We shall show first that d > 0 with equality if and only if ¢ 1s a square and
S is a unital.

Lemma 3.1 Let N be the set of ordinary lines. Then

1 = ¢#4+q+1-s5, (1)
g’ct = sq, ()
Zk,(k,e—l) = s(s—1), 3)
- Sd = dg+/g+1), and (4)
%:vdz(dzle—Nl) = dg+v3+d-1) (8)

Proof. Egquations (2) and (3) hold, since every point of S lies on g ordinary
lines and since any two points of S are joined by an ordinary line. Equations
(4) and (5) are consequences of (1), (2) and (3), since k= \/g+1—4d;. O
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Theorem 3.2 We have d > 0 with equality if and only if S is a unital.

Proof. From equations (4) and (5) in Lemma 3.1, we obtain Y ey df =
d(2q + 2,/q + d). Since the left hand side is non-negative, we see that d > 0
or d < —(2¢ 4+ 2,/q) that is |S| < ¢\/g+ 1 or |S| > q,/g + 29+ 2,/g + 1.
Since this holds for every strong representative system of Il and because every
subset of S is also a strong representative system, we see that we must have

|S| < q4/g+ 1 or equivalently d > 0.
Now assume that d = 0. Then equations (4) and (5) in Lemma 3.1
imply that every ordinary line meets S in /g + 1 points so that S is a unital.
d

From now on we assume that g is a square.

Lemma 3.3 a) Suppose that every line meets § in at most /g + 1 points, so
P(S) is a partial unital. Then every ordinary line meets S in at least \/g+1—d
points. '

b) Suppose that there is no line missing S and that every line meets S in
at most \/q + 1 points, so P(S) is a blocking set as well as a partial unital.
Denote by m be the number of ordinary lines that satisfy d; > 1. Then
m<(d-1)g+a+1)+2—-d

Proof. a) Consider a point P of § and an ordinary line [ through P. Since
P lies on a special line and because every ordinary line through P meets S
in at most \/g + 1 points, we see that ¢\ /g+1—-d =|S| < |[INS|+(¢—-1)\/a
so that INS| > ,/g+1—d.

b) By part a) and the hypotheses, we have 0 < d; < d for every ordinary
line. Let M be the set of ordinary lines ! that satisfy d; > 1. Then Lemma
3.1 implies that

dlg+vg+d—1)=> d(d—-1)<d) (d-1)=d*(¢+ g+ 1)—dm.
leM leM

Hencem < (d—1)(¢+ /g +1)+2—d. o

Lemma 3.4 a) Suppose that 2d < ,/q. If there is a line with more than
v/q + 1 special points, then there are at most d — 1 lines missing S.

b) Suppose that d < ,/g. There is a line with more than ,/g+ 1 special
points if and only if there is a point that lies on more than /g + 1 special
lines.

Proof. a) Suppose that a line [, meets S in /g + 1 + e points with e > 1.
Then dj,(di, — 1) = e(e + 1). Assume that there are d (or more) lines missing
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S. Then Lemma 3.1 (5) implies that d(g+,/g) +e(e+1) < d(g+,/g+d—1)
so that e(e+ 1) < d(d — 1), that is

e<d-1.

Let Py,..., P, be the points of [, that lie on more than /g + 1 special lines
and let /g +1+1t; be the number of special lines through P;. Since the points
of SN, lie on a unique special line, we see that l; meets at most

\/a_l_l+e+(q_\/¢}_e)(\/§+1)+i:ti=q\/¢}+l—e\/¢}+i:ti

special lines. Since the number of special lines is s = ¢,/g+ 1 — d, we conclude
that

doti>e/q—d.
i=1

Consider a point P,. Let M; be the set of ordinary lines through P,
different from lo. Then |M;| = ¢ —,/g—1 —t; and

Wa+1=d=|S]=(Va+1+e)+(Vat1ltt)+ T

leM;

= (Va+1l+e)+(Va+l+t)+(a-va-1-t)va+1)- 3 d

leM;
Hence

- di=tig—e—d>t(\/g—e—d)

leM;
If M! is the set of lines ! of M; with d; < 0, then we conclude

dodi(di—1)>-2) di > 2ti(y/g— e —d).

leM! leM;

If M’ is the union of the sets M!,2 =1,...,u, we obtain

Y di(d—1)> i:%,-(\/&— e—d)>2ey/d—d)(V/a—e—d).

leM’

Since the d lines [ missing S satisfy dy(d; — 1) = g + /g, we have
dg+va)+ 2ey/a— d(yi—e—d) < dlg+a+d—1)
by Lemma 3.1 (5). Hence
£(e) = 2eva— d)(/g - e — d) < d(d — 1).
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Since 1 < e < d—1 and because f has degree 2 in e, it follows that f(1) <
d(d—1)or f(d~1) < d(d — 1). However, since 2d < ,/g, we have

f1) = 2G - d)(va—d—1) > d(d 1)

and

Fld—1)=2((d - 1)y - d)(g—2d+1) > 2((d ~ 1)\/g — d) > 2d(2d — 3).

In view of 1 < e < d— 1, we have d > 2. Hence
f(d—1)>2d(2d —3) > d(d — 1).

This contradiction proves part a).
b) Suppose a point P lies on t > /g + 2 special lines and assume that every
line through P has at most ,/g + 1 special points. Then

S| < t+(g+1—-t)(v/g+1)
< Va+2+(g-va-1)Va+1)=g9/a—a+1,

contradicting the hypothesis. Thus a point on at least /g + 2 special lines lies
on a line with at least /g + 2 special points. By duality, a line with at least
v/@ + 2 special points has a point lying on at least /g + 2 special lines. O

Proposition 3.5 If 2d < ,/q then there exist at most d lines that miss S
and equality holds if and only if S can be obtained from a unital by removing
d points.

Proof. In view of d(q + /g +d —1) < (d + 1)(g + /g), equation (5) in
Lemma 3.1 implies that there are at most d lines that miss §. Now assume
that there are d lines that miss 5. We have to show that S is a unital from
which d points have been removed. We proceed by induction on d. If d = 0
then Lemma 3.2 shows that S is a unital. Now assume that d > 1. In view
of Lemma 3.4, every line meets S in at most \/g + 1 points, and every point
lies on at most /g + 1 special lines.

Let P be a point not in S, denote by a the number of passants through
P, and by t the number of special lines through P. Then P liesong+1—a—t
lines that are not special lines and not passants and these lines meet S in at
most /g + 1 points. Hence '

IS] € t+(g+1l-a—t)(/g+1)<
< (g+1)(Va+1)~(a+t)/g=q/a+q+/3+1— (a+1t)/q

Since |S| > ¢/g — /g + 1, it follows that t + @ < /g + 1. In particular, a
point lying on a passant of S lies on at most /g special lines. Dually, if a
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point P lies on no special line, then every line through P meets S in at most

/4 points.
Let m be the number of points lying on one of the d lines that miss S.

Then
mZd(q+1)—%d(d—1)>(d—1)(q+\/¢}+1)+2—d.

The statement dual to the statement in Lemma 3.3 b) shows therefore that
there exists a point P that lies on no special line. Since every line through
P meets S in at most /g points and in view of |S| > (¢ + 1)(y/7 — 1),
we conclude that P lies on a line with precisely ,/q special points. Let P,
1=1,...,u:= ¢—,/q, be the ordinary points of [ other than P. We denote by
«; the number of passants through P;, and by t; the number of special lines
through P;,2=1,...,u. Then t; + a; < \/g+ 1. We have 3, t; = |S| — /g,
since every special line that meets | not in S contains a point P;. It follows
that

Yo £ PWat1-8)=(a-vaVI+)- Xt
(- va)va+1) - IS+ vVa=q/q—IS| =d -1

Since there are d passants, it follows that some passant !’ must pass through
P. Furthermore, I is the only passant through P, since the lines through P
meet S in at most /g points and since |S| > (¢ — 1){/q. Since P does not
lie on a special line it follows that S’ := S U {P,l'} is a strong representative
system with deficiency d — 1. Furthermore, there are d — 1 lines missing S’.
Now apply the induction hypothesis to complete the proof. O

1l

4. Strong representative systems with deficiency 1

In this section, we shall show that every partial unital with deficiency 1 is a
unital from which one point has been removed.

Let S be a strong representative system with deficiency 1. Proposition
3.5 says that there is at most one line missing S with equality only if § is
obtained from a unital by removing one point. We therefore only have to show
that there is a line missing S. We shall succeed to do so for ¢ # 4,9, 16, 25.

Lemma 4.1 If ¢ > 49 and if S is a strong representative system with defi-
ciency 1 in PG(2, q) then there is a line missing S.

Proof. Assume that every line meets S. If every line meets S in at most
V/@ +1 points, then, by Lemma 3.3 a), every ordinary line meets S in at least
/4 points. In this case, d;(d; — 1) = 0 for every line that is not a tangent. But
equation (5) in Lemma 3.1 shows that this is not possible.
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Hence, there is a line I; that meets S in V@ + 1 + e points with e > 1.
As in the proof of Lemma 3.4, we denote by P, ..., P, the points of [, that
lie on more than /g + 1 tangents, by /g + 1 + t; the number of tangents
through P;, and by M’ the set of lines ! through one of the points P; such
that di < 0 and ! # ly. As in the proof of Lemma 3.4, we have

Y ti>esg—1
=1

and

D di(di—1) 2 2(e/g - 1)(v/g~ e — 1) =: f(e).

leM’
Lemma 3.1 (5) shows that f(e) < ¢+ /g. In view of ¢ > 49, we have

fM=2Ava-1)Vi-2)>9+4
and
fVi-2) = 2a—2/i—1) > 4+ Vi
Hence e # 1, ,/g—2. Since f has degree 2 in e, it follows that 1 < e < /g2
is not possible. Hence e > /g — 1 and d;,(di, — 1) > (y/2 — 1)(v/2— 2).

In the same way it follows that every line [ that meets § in more than
\/@+1 points satisfies d;(d; —1) > (,/g—1)(/3—2). But 2(,/g—1)(/3—2) >
q+./4, so equation (5) in Lemma 3.1 shows that every line other than l, meets
S in at most /g + 1 points.

Consider a point P € lp N S. Since S has deficiency 1 and since I has
deficiency —e, the sum of the deficiencies of the ordinary lines other than I,
on P must be e+1. Since [, is the only line with negative deficiency, it follows
from equation (4) in Lemma 3.1 that

(Va+l+e)e+l)—e=lbNS|(e+1)+d, <qg++q+1.
But e > /g + 1, a contradiction. O

5. Strong representative systems with deficiency 2

In this section we consider a strong representative system with g,/g—1 points.
Now two difficulties occur. First of all, we are no longer able to prove that
every line meets S in at most /g+1 points. Secondly we shall find parameters
for a very regular hypothetical partial unital with deficiency two that is not
part of a unital.

In this section we assume that every line meets S in at most /g + 1
points (so S is a partial unital) and that ¢ > 16. Lemma 3.4 shows that every
point lies on at most /g + 1 tangents.

An ordinary line which meets S in precisely 7 points will be called an
i-line, and by b; we denote the number of i- lines.
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Lemma 5.1 A point of S either lies on a unique (/g — 1)-line and on no
\/3-line, or it lies on no (/g —1)-line and on two ,/g-lines. In particular, every
ordinary line meets S in 0, \/g—1, \/q or /g + 1 points.

Proof. Obvious. 0

Lemma 5.2 a) If there is no line missing S then every ordinary line meets
S in \/qg — 1 or \/q+ 1 points. Furthermore the number of lines that meet S
in \/q — 1 points is equal to ¢ + /g + 1.

b) If l is a line missing S, then every point of | lies on at most /g
tangents. Dually, if P is a point lying on no tangent, then every line through
P meets S in at most ,/q points.

c) There is a line missing S if and only if there is a point lying on no
tangents.

Proof. a) Since there is no line missing §, every ordinary line meets S
in,/g—1, /g or /g +1 points. Since the right hand sides of equations (4) and
(5) in Lemma 3.1 coincide, it follows that there do not exist lines meeting S in
precisely /g points. Now equation (2) in Lemma 3.1 shows that the number
of (/g — 1)- lines is equal to ¢ + /g + 1.

b) Suppose that [ is a line missing S and denote by t the number of
tangents that pass through a point P of I. Since every line meets S in at most
\/@+1 points, we see that the lines through P cover at most t4+(g—t)(,/g+1) =
4./9+ q —t,/q points of S. Since this number must be at least |S| = ¢,/ -1,
we see that t < ,/g.

c) It suffices to verify one direction, the other implication follows then
by duality. Assume that there is no line missing S and that there exists a
point P that lies on no tangent. Then part a) shows that every ordinary
line meets S in /g — 1 or \/g + 1 points so that b) implies that every line
through P meets S in /g — 1 points. Hence |S| = (¢ + 1)(\/g — 1), which is
a contradiction. a

Lemma 5.3 It is not possible that there is exactly one line that misses S.

Proof. Assume that there is 2 unique line /; missing S. By Lemma 5.1,
every ordinary line other than l, meets S in at least \/g — 1 points. Lemma
3.1 implies that the number of (/g — 1)-lines is b 51 := ;(¢ + /g +2) and
that the number of |/g-lines is b 5 = ¢ — 1.

By Lemma 5.2, there exists a point not lying on a tangent. Assume
that there are two points not lying on tangents. Then the statement dual to
Proposition 3.5 shows that the set of tangents of S are all but two tangents

46



BLOKHUIS AND METSCH: MINIMAL BLOCKING SETS

from a unital so that S consists of all but two points of a unital. But then
there are two lines missing .S, a contradiction. Hence there is a unique point
Py not lying on tangents.

First consider the case in which P, € ;. By 5.2 b), every point of I, lies
on at most /g tangents. Since there are ¢,/q — 1 tangents, it follows that
has a unique point Qo that lies on /g — 1 tangents while the ¢ — 1 points
# Py, Qo of o lie on /g tangents. Dualizing, we see that Po must lieon g —1
lines that meet S in /g points. Since b 5 = ¢ — 1, this means that every
V/@-line passes through P,. Let P be a point # Py, Qo of . Then P lies on
\/q tangents, which together cover ,/g points of 5, and on ¢ — /g lines that
cover the remaining |S| - /g = ¢./4— /-1 = (¢— /7)(,/g +1) — 1 points
of S. But this is only possible if P lies on a unique ,/g-line, a contradiction.

Now consider the case that P, is not on ly. Since the lines through Py
meet S in at most /g points (Lemma 5.2), every line through P, meets S in
V@ —1 or /g points. In view of |S| = (¢ — /g)v/a+ (v/a+1)(/g — 1), we see
that Py lies on precisely ¢ — /g lines that meet S in ,/g points. Let ! be one
of these lines. Then each of the ,/g points of [N S lies on a second /g-line.
Hence there are at least ,/g lines that meet S in /g points and do not pass
through Po. But there are only ¢ — 1 lines that meet S in ,/g points and P
lies already on ¢ — /g of them. This contradiction completes the proof of the
lemma. O

Lemma 5.4 If there does not exist a line missing S, then q is even.

Proof. By Lemma 5.2, every ordinary line meets S in /g —1or /g +1
points. Furthermore, every point of S lies on a unique tangent and a unique
line that meets S in \/g — 1 points. If ¢ is odd, then gcd(,\/7 — 2,/q) = 1.
However, the main result in the next section shows that this situation cannot
occur., d

Remark. If q is even, then we do not know if there exists a partial unital
with deficiency two which meets every line. The first difficult case is ¢ = 16. Is
it possible to find a set S of 63 points in PG(2,16) with intersection numbers
1, 3 and 5 and such that every point lies on a unique tangent?

6. {1,m,n}-sets in PG(2,q)

In this section we consider a set S of points in PG(2,q), ¢ a square, with
intersection numbers 1,m, n satisfying 1 < m < n. We call a line that meets
S in 1, m or n points respectively a tangent, a short line or a long line. We
assume that every point of S lies on a unique tangent and on a unique short
line. These conditions are very restrictive and we expect strong results; in
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fact, we do not believe that such sets exist. However, we shall only be able to
prove the following proposition.

Proposition 6.1 Suppose § is a set of points in PG(2, q), g a square, having
the properties described above. Then (m —1,n — 1) # 1.

Before we start with the proof of this proposition, we prove a lemma
needed later on in the proof.

Lemma 6.2 Let S be a set of points in the affine plane AG(2,q), where
g = p® for some prime number p. Suppose II;, II; and II3 are three parallel
classes with the following property: Exactly one line I; of II; meets S in a
number of points which is not zero modulo p. Then [, l; and I3 are concurrent.

Proof. We may assume that II; consists of the vertical lines, that II; con-
sists of the horizontal lines, and that II; consists of the lines with equations
z+y = ¢, ¢ € F,. Furthermore, we may assume that /; and I, meet in (0,0).
Let (z:,%:), 1 = 1,...,s := | 5|, be the points of S. We are interested in the
sums X =Y/, z; and Y := Y7 y;. If [ € II;\{{1}, then the points of IN §
together will contribute nothing to the sum X, because all points of /NS have
the same z-coordinate and because of |IN S| = 0 (in F,). Also the points of
the exceptional line I/; will contribute nothing to the sum X, because /; has
equation z = 0. Hence X = 0. The same argument used for the lines of II,
shows that Y = 0. Hence X +Y = 0. Now we use the lines of II5 to determine
X +Y again.

Since the lines | € II; have equations z +y = ¢, c € F,, we see as before
that the points of I N § together will contribute nothing to the sum X 4+ Y,
if [ € I3 \ {la}. Furthermore, if I3 has equation = + y = cg, then the points
of 13N S contribute |l N S|cp to the sum X + Y. Thus X + Y = |IN F]co. As
X+Y =0and |INS| # 0 (in F,), it follows that ¢ = 0, that is, I3 passes
through (0, 0). o

Lemma 6.3 a) The number of points of S is s=m+ (g —1)(n —1).
b)s(1+L+<)=¢g*+q+1.
c)(n——l)(m+1)=q(n—1—m—g:,(:—;l)—z-m) and n<2+ /4.

Proof. a) Since every point of S lies on a unique tangent and a unique short
line, we have s =m + (¢ — 1)(n — 1).

b) Since every every point of S lies on a unique tangent, a unique short
line and g—1 long lines, the number of tangents is s, the number of short lines
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is 2 and the number of long lines is 1(3511 Thus s + = + 1(3511 =q¢®+q+1.

¢) The equation in c) follows from a) and b). Assume that n > 2+ /3.
Then (":)1:“’ > (”;L):_q >2sothat (n—1)(m+1)>¢g(n—1-—m+2m)=
g(n — 1 +m) > q(m + 1) which is absurd, sincen < g+ 1. 0

Lemma 6.4 For a point P not in the set S, let tp be the number of tangents
of S through P. Then Y pggtp = sq and T pgs(tp —n)’ = (n — m)2,

Proof. Since § has s tangents, we have

D l=¢"+q+1-s5, Y tp=sg and > te(tp—1) = s(s—1).

P¢s P¢s P¢s
Thus
A=) (tp—n)l=s(s—1)—(2n—1)sq+n*(¢® +q+1—3s).
Pgs
Usingg?+q+1—s= s(# + 9;—1) (see Lemma 6.3), we obtain
A_(p-mp

(5= 1)~ (2n—L)g +n*(= + L0) = Z(n—m)?
(s—1)—(2n-1)g+n(g—1)—m+2n=0.

S m

a

Lemma 6.5 Set 8 = ¢* + ¢+ 1 — 5. Suppose that 0 < k < n — m and that
t;,2=1,...,8, are integers satisfying ¥.¢_, t; = sq and t; = k (mod n —m).
If ¢ > 16, then Y0 (t: — n)? > £(n — m)? with equality if and only if k = 0
and t; € {m,n} foralli =1,...,3

Proof. By Lemma 6.3 b), we have § = s(1 + £=1). It follows that
: s
ti = = §n — — — .
‘Ezl sq = $8n (n —m)

Hence the average value for ¢; is n — _a_(g";_m) Using s = m+(g—1)(n—1) and
2 <m < n<2+,/q wesee that the average value for ¢; is between n — 1
and n. Thus ¥ (t; — n)? obtains its minimum value, if t; € {m + k,n + k} for
all 7. Hence

S (ti—n)? > z(n—m — k)? + yk®

i=1

where z and y are defined by z + y = § and

a(m+ k) +y(n+k) =3 ti= sq,
i=1
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that is,

sk s . sk s
+ —. and y=8— —
n—m m n—m m

Now assume that 37 (t; — n)? < £(n — m)?. Then

T =

v

i('n, — m)2 z(n—m — lc)2 + yk?
m

= (z+y)k* - 2z(n — m)k + z(n — m)?
= §k% — 20(n — m)k + (—F

n—m

+=)(n—m)2.

If £ = 0 the we obtain equality so that t; € {m + k,n + k} for all i. Assume
that k£ > 0. Then it follows that

0 Zv§k—2$(n—m)+§(n—m)

o 2s n
= —sk——m(n—m)+s(n—m)
> §— —(n— .
> 3 m(n m)

Since § = s( + 9;—1), we conclude that 2s(n —m) > sm = s+ sg;—lm so that
(2n — 1 —2m)n > (¢ — 1)m. Since ¢ — 1 > 2n (this follows from g > 16 and
n <2+ ./, cf. 6.3 ¢), and m > 2, it follows that (2n — 5)n > 2(g — 1) or
2((n — 1) — q) > n — 2. Since (n — 1)? < q by the preceding lemma, this is a
contradiction. a

Lemma 6.6 If (n —1,m —1) = 1 and q > 16 then every point outside the
set S lies on m or n tangents. Furthermore there are exactly = points that
lie on m tangents. We havem = \/g—1 and n =1+ ,/q.

Proof. For every point P not in §, we denote by tp the number of tangents
and by mp the number of m-lines through P. Then

m+(g—1)n—1)=s=tp+mpm+(g+1—tp—mp)n

so that
tp(n—1)+mp(n—m)=q+2n—-1-—m

Since (n — 1,m — 1) = 1 and hence (n — 1,n — m) = 1, we see that this
equation determines tp uniquely modulo n — m. The preceding two lemmas
show that tp € {m,n} for every point P not in S. Lemma 6.3 b) shows that

S S
dotp=sg=—-m+(¢®+qg+1—-s——)n
Pgs m m
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It follows that there are exactly Z points that lie on m tangents. Let P be
a point satisfying tp = n. Then tp(n — 1)+ mp(n—m) =q+2n—-1-m
implies that n — m divides ¢ — (n — 1)2. It follows therefore from Lemma 6.3
c) that ¢ divides (n —1)(m +1). Since m+1 < n < 14 ,/g, this implies that
m=,/g—1landn=,/g+1. 0

Lemma 6.7 For ¢ > 16 the case (n — 1,m — 1) = 1 does not occur.

Proof. Assumethat (n —1,m—1)=1 Thenm=,/g—landn=,/g+1
by the preceding lemma. Since (n — 1,m — 1) = 1, it follows that ¢ is odd.

Let I be a long line. Then the short lines that meet ! in a point of S are
concurrent. This can be seen as follows. Let P; be a point of NS and let [;
be the short line through P;, i = 1,2,3. Consider the affine plane A that has
[ as line at infinity, and the parallel-classes II;, 7 = 1,2, 3, that contains I;.
Then Lemma 6.2 shows that the lines I;, [; and l3 are concurrent. Therefore
all short lines that meet the long line ! in a point of S are concurrent.

Let P be the point in which these ,/g + 1 short lines meet. Since every
point lies on at most /g+ 1 short lines, every short line through P must meet
lin a point of S. Let {; and I, be two short lines through P. Set P, :=[; N1
and let @ be a point # P, of I; N S. Then each line which joins @ to one of
the /g points of I\{ P, } is a long line. Since ; is short, we see that @ lieson a
long line I’ that meets ! in a point Q' of S and that meets l, in a point outside
S. Hence I meets two of the short lines through P and therefore every short
line that meets !’ in a point of S will pass through P (use the same argument
we used for the line [). However, since P lies on /g+1 short lines and because
I’ and [l; meet in a point outside S, there must be a point on I’N .S which does
not lie on one of the short lines through P. This contradiction completes the
proof. a
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The complement of a geometric
hyperplane in a generalized polygon is
usually connected

A. E. Brouwer

Abstract

We show that with few exceptions the subgeometry of a finite gener-
alized polygon induced by the objects far away from (i.e., in general
position w.r.t.) a given flag, is connected.

1. Generalized polygons

Let (X, L) be a nondegenerate generalized n-gon, and let z € X, L € L,
z € L. Let (Y, M) be the subgeometry of (X, £) induced by the points and
lines in general position w.r.t. z, and let (Z, V) be the subgeometry of (Y, M)
induced by the points and lines in general position w.r.t. (z,L). (Here two
objects are said to be in general position when they are contained in opposite
chambers. In particular, for two points « and y of a generalized 2m-gon, this
means d(z,y) = m in the collinearity graph, or d(z,y) = 2m in the point-line
incidence graph.)

We want to show that (Y, M) and (Z, V) are connected. If n = 2, then
Z =Y = X\{z} and M = £, N = L\{L}, so that indeed both geometries
are connected (and are generalized 2-gons again).

If n = 3, then (X, £) is a projective plane, (Y, M) a dual affine plane,
and (Z,N') what is sometimes called a biaffine plane: all points not on a
given line, and all lines not on a given point. Again, clearly both geometries
are connected.

Now let us assume that n > 3 and (X, £) is finite of order (s, t), so that
n € {4,6,8,12}. Each line of M has s points in Y, so if s = 1 then (Y, M)
will be disconnected (unless |Y| = 1). Similarly, if t = 1 then (Z,N) will be
disconnected (unless |N'| = 1). Moreover, if t = 1 and n = 2m, then (X, £) is
the flag graph of a generalized m-gon of order (s, s), and considering (Y, M)
in the former setting is equivalent to considering (Z, V) in the latter setting.
Thus, we may suppose s,t > 1 and n € {4,6,8}.

The main purpose of the present note is to prove the following theorem.
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Theorem 1.1 Let (X, L) be a thick finite generalized n-gon of order (s, t).
Then

(i) The subgeometry (Y, M) (or, indeed, the complement of an arbitrary
geometric hyperplane in (X, L)) is connected, except possibly in the cases
(n,s,t) = (6,2,2), (8,2,4).

(ii) The subgeometry (Z,N') is connected, except possibly in the cases
(n,s,t) = (4,2,2), (6,2,2), (6,3,3), (8,2,4), (8,4,2).

(iii) For the stated possibly exceptional parameter sets actual exceptions
do occur.

2. Examples

Let us first discuss the exceptions. There is a unique generalized quadrangle
of order (2,2), and in it (Y, M) is the 1-skeleton of the cube, and (Z,N) is
the union of two quadrangles.

The only known generalized hexagons of order (g, q) are those gotten
from G,(q) - these are not self-dual, except when g is a power of three. There is
a unique generalized hexagon of order (2,2) (up to duality) (Cohen & Tits [2]).
Let P = G, be the maximal parabolic of G = G;(gq) corresponding to a short
root r and let points be the cosets of P, and lines the cosets of @ = G,, where
s is the other fundamental root. (The corresponding generalized hexagon is
called the dual of the classical G;(g) generalized hexagon.) Then the ¢® points
at distance 3 from z are parametrized by E := U_,,,, the product of the
five root groups X, for positive a distinct from r. Now [E, E] = X3,z
so E/[E, E] is elementary abelian of order ¢*. The group E fixes the g + 1
lines on z, and hence a system of g + 1 parallel classes of lines in (Y, M).
We see that the geometry on Y given by the union of a parallel classes has
connected components of size (at most) ¢**'. In particular, for ¢ = 2 we find
that (Y, M) has two connected components of 16 points each, and (Z,N) is
the union of four 8-gons. Similarly, for ¢ = 3 we find that (Z, V') has three
connected components, each of size 81.

If we consider the classical G;(g) generalized hexagon, i.e., take for the
points the cosets of G,, then for ¢ = 3 nothing changes since G has an auto-
morphism interchanging long and short roots. But for ¢ = 2 we now find that
(Y, M) is connected (Cohen & Tits [2]; see also [1], p. 384). However, there
are other geometric hyperplanes with disconnected complement: (X, L) con-
tains a generalized hexagon (W, K) of order (1,2); if H is the set of 21 points
on the lines of K but not in W, then each line meets H in precisely 1 point,
and X\ H has two connected components (of sizes 14 and 28). A complete
description of the geometric hyperplanes in the two generalized hexagons of
order (2,2) can be found in [3].
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Finally, the only known generalized octagons are those gotten from
2Fy(q). In the particular case of the generalized octagon of order (2,4) be-
longing to 2Fy(2), explicit inspection reveals that both (¥, M) and (Z,N)
have two connected components with 512 points each. The automorphism
group of each component has order 10240 and acts sharply 2-arc transitively.

Thus, we verified part (iii) of the theorem.

Considering the case s > 1,1 = 1 for a moment, this means that we
saw that for (n,s,t) = (8,2,1), (12,2,1) and (12,3,1) there exist generalized
polygons such that (Y, M) is disconnected; for each of these parameter sets
a unique generalized polygon is known.

3. An eigenvalue argument

Connectedness of various graphs will be proved here using an eigenvalue ar-
gument I learned from Willem Haemers. Suppose I' is a connected graph with
second largest eigenvalue 8, and A is a regular subgraph of valency r > 6.
Then A is connected.

[Indeed, the multiplicity of the valency as eigenvalue of a regular graph
A equals the number of connected components of A. But the largest eigen-
value of I' has multiplicity 1 (by Perron-Frobenius), so by interlacing it follows
that A is connected.]

So, we need the second largest eigenvalue of the collinearity graph of a
generalized n-gon of order (s, t). As is well known (cf. [1], p. 203) this is

§=s—14++Vast

with a = 0,1,2,3 for n = 4,6,8,12, respectively. The geometry (Y, M) (or,
indeed, the complement of an arbitrary geometric hyperplane in (X, £)) has
t + 1 lines on each point, and s points on each line, and hence its collinearity
graph is regular of valency r = (s — 1)(t 4+ 1), and our sufficient condition for
connectedness becomes (s — 1)(t + 1) > s — 1 + /ast, i.e.,

s—1>/as/t.

If s > 1, then this is automatically fulfilled for generalized quadrangles (n =
4). For generalized hexagons we find s = t = 2 as only possible exception.
Finally, for generalized octagons we find s = 2, ¢ < 4. But since 2st is a
square this means that t = 4.

This proves part (i) of the theorem.

4. Far away from a flag

In the cases we are considering (n = 4,6,8), the geometry (Z, ) has the
same point set as (Y, M), but has lost a parallel class C of lines. Suppose
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that it is disconnected, so that Z is the disjoint union of two nonempty sets
U, V where no line of N meets both U and V. Consider the corresponding
partition of the adjacency matrix A of the collinearity graph of (¥, M), and
its condensed form, the matrix B of average row sums of the blocks of A.
Withr = (s —1)(t + 1), u = |U], v = |V]|, we find

B:(T—C € )

euf/v r—eufv

where € is the average number of neighbours a point of U has in V. The
eigenvalues of B are r and r — € — eu/v, and these interlace the eigenvalues
of A, so we must have

(s =1)(t +1) — (1 +u/v) < s — 1 + Vast.

Let us look more closely at €. If n; lines of C have 7 points in U and s — 1
points in V, then u = Y in;, v = 3(s — )ni, € = (1/u) ¥ i(s — 2)n,, so that

e(1 + %) = (% + %)Zi(s ~ .

This expression is maximized for given v and v by having all lines meet U in
the same number of points, and then it equals s. Thus,

(s—1)(t+1)—s<s—1+Vast,

le,(s—-1)(t-1)<L1+ Vast. Forn =4 (a = 0) this implies s = ¢t = 2. For
n = 6 (¢ = 1) this implies s = ¢t € {2,3} (since st is a square). Finally, for
n = 8 (a = 2) this implies {s,t} = {2,4} (since 2st is a square).

This proves part (ii) of the theorem.

5. The infinite case

As Hans Cuypers remarked, it is easy to prove that (Y, M) and (Z,N) are
connected in the case of not necessarily finite thick generalized quadrangles.

Theorem 5.1 Let (X, L) be a thick generalized quadrangle. Then the sub-
geometries (Y, M) (or, indeed, the complement of an arbitrary geometric
hyperplane in (X, £)) and (Z,N') are connected, except that in case (X, L)
is the unique generalized quadrangle of order (2,2), the geometry (Z,N) is
the union of two quadrangles.

Proof. The part about the complement of a geometric hyperplane is well-
known and easy to prove, so let us consider (Z, ). Since (Y, M) is connected
(and Y = Z) it suffices to show that two points y,z € Z that are joined by a
line K concurrent with L are joined by a chain in (Z, V). By duality we may
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assume that each line has at least four points. Let us denote incidence by *
and collinearity (concurrency) by ~. Let M, N be lines distinct from K on
¥, 2, respectively. Then M, N € . A chain y * M xp* H x g * N x z will join
yand zin (Z,N) unless H~Lorp~zorq~z.Let A= {alzc ~a ~y}\L
and B = {b|lz ~ b~ z}\L. If ¢ € N\B, then g is collinear with all except at
most one element of A, for if ¢ £ a,a’ then at most one of the two lines joining
g to ya or ya' meets L and the other will achieve the connection. But now
choose two points q,¢' € N\B. Since they cannot have a common neighbour
in A, it follows that |A| = 2 so that t = 2. But in that case s # 3 and we can
find a third point ¢” € N\B, a contradiction. O
For n > 4, nothing is known.
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Locally co-Heawood graphs

A. E. Brouwer D. G. Fon-der-Flaass
S. V. Shpectorov

Abstract

Let A be the incidence graph of the unique biplane on 7 points, that
is, the bipartite complement of the Heawood graph. We find that there
are precisely three connected graphs that are locally A, on 36, 48 and
108 vertices, where the last graph is an antipodal 3-cover of the first
one,

1. Introduction

Let notation be as in [1]. (In particular, ~ denotes adjacency, I';(vy) is the
collection of vertices at distance ¢ from v in T, I'(y) := I'1(y), and vt :=
{7} UT(7).) The Heawood graph H is the smallest cubic graph of girth 6; it
is bipartite, the incidence graph of the Fano plane. The co-Heawood graph A
is its bipartite complement, the nonincidence graph of the Fano plane, i.e.,
the incidence graph of the unique biplane on 7 points. (Thus, A = Hj.) The
graph A has 14 vertices, valency 4, is bipartite, is distance-regular of diameter
3 and has distance distribution diagram

4 13 22 4 v =14

Its automorphism group is G ~ PGL(2,7) of order 336 acting distance tran-
sitively.

The graph A occurs in the Suzuki chain Sg = 4K, S; = A, 52, 53, S4,
S5 of graphs on 4, 14, 36, 100, 416, 1782 vertices, respectively. Each graph
S; 41 of this chain is locally §;. In particular, the graph ¥ := 5, is locally A,
it is strongly regular with parameters (v, k, A, p) = (36, 14,4, 6).

In this note we determine all connected graphs that are locally A, i.e.,
all connected graphs T' such that for each vertex v € T' its neighbourhood
I'(y) induces a subgraph isomorphic to A. There turn out to be three such
graphs. The smallest one is the graph X on 36 vertices. The largest one, T,
on 108 vertices, is an antipodal 3-cover of X, but is not distance-regular. Its
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distance-distribution diagram is

This graph was described explicitly in Neumaier [2]; the above distance-
distribution diagram was given by Soicher [pers. comm.]. Soicher [3] proved
that ¥ and T are the unique connected locally A graphs with an automor-
phism group transitive on ordered triangles, and asked whether this transi-
tivity assumption could be removed. In this note this question is answered
in the negative. Indeed, there is a third locally A graph &;, on 48 vertices,
where ®,, is defined as follows: Take for the vertex set the set Z,, x I, (where
I, is an arbitrary set of size 4), and let (a,b) be adjacent to the 14 vertices
(a £4,b), (a £2,¥), (a £1,¥) for b #b.

For any two vertices z,y of a graph I at mutual distance 2, let p(z,y) :=
I'(z) N T(y) denote the (graph induced on the) set of common neighbours of
z and y. We shall call such a subgraph of I' a u-graph.

Theorem 1.1 Let T' be a connected locally A graph. Then one of the fol-
lowing three cases occurs:

(a)T' ~ X. Thus, T' has 36 vertices, and u(z,y) ~ Cs+ 2K, for any two
vertices z,y at distance 2. The graph ¥ has diameter 2, and Aut ¥ ~ U3(3) : 2
acting rank 3 with vertex stabilizer Ly(7) : 2.

(b)T' ~ T. Thus, I has 108 vertices, and for each vertex z of I' we have
u(z,y) ~ C4 for 21 vertices y, and u(z,y) ~ K, for 42 vertices y. The graph
T has diameter 4, and AutT ~ (3 x Us(3)) : 2 acting rank 7 with vertex
stabilizer Ly(7) : 2.

(c)T ~ &,,. Thus, I has 48 vertices, and for each vertex z of ' we
have u(z,y) ~ Cs, Cs, Cs, 6K, 3K, and 2K, for 3, 8, 3, 2, 2, 12 vertices y,
respectively. The graph ®,, has diameter 3, and Aut ®,, ~ Dy x Sym(4),
acting transitively on the vertices (but not on the edges).

Note that there are infinitely many graphs that are locally E, if E is
the graph obtained from A by deleting one edge. Examples are given by the
graphs ®,, (m =00 or m > 9, m # 12).
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2. Generalities

Let ' be a connected locally A graph.

Lemma 2.1 For any two vertices z,y at distance 2 inT', the subgraph pu(z,y)
of T is one of the following:
(i) mK, (a coclique of sizem), with 1 <m <7,
(ii) C4 + mK, (a quadrangle and m isolated points), with 0 < m < 2,
(1ii) Cs + mK; (a hexagon and m isolated points), with 0 < m < 1, or
(iv) Cs (an octagon).

Proof. Forz € u(z,y), weseeinT'(z) ~ A the vertices z, y without common
neighbour, so in I'(z) these vertices have distance 2 or 3. In the former case
z,¥, z have 2 common neighbours, in the latter case none. Thus, u(z,y) is a
union of polygons and isolated points. Since A is bipartite, the polygons have
an even length. If C is an induced 2g-gon in A, then the 4g edges meeting C
in one vertex have their other end point in A\ C, so that 4¢ < 4(14 — 2g),
1.e.,g < 4. Inspection of A learns that no two polygon components can occur,
and at most the indicated number of isolated points. o

We can describe the polygons in A: there are 21 quadrangles (all equiv-
alent under G), and any two vertices of A at distance 2 determine a unique
quadrangle. The distance distribution diagram around a quadrangle (or around
an octagon, or around a pair of vertices at distance 3) is

2 2 -

There are 21 octagons, all equivalent under G. They arise as the sets of vertices
at distance 1 to a quadrangle (or to a pair of vertices at mutual distance 3).
There are 84 hexagons, falling into two G-orbits.

Ifa ~ z ~ bin I'(z), then locally in z we see that a and b have a common
neighbour z, and hence there is a unique other point y adjacent to a, b, z, and
p(z,y) contains a polygon on the 2-claw a ~ z ~ b. Thus: any 2-claw in I'(z)
determines a unique polygon. Let us first determine such polygon systems in

A.

Lemma 2.2 Let P be a system of polygons in A such that any 2-claw of
A Is In a unique polygon from P. Then we have one of the following seven
possibilities:

(i) P consists of all 21 quadrangles;

(1i) P consists of 14 hexagons;

(iii) P consists of 3 octagons and 10 hexagons;
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(iv) P consists of 1 quadrangle, 1 octagon and 12 hexagons;
(v) P consists of 3 quadrangles, 3 octagons and 8 hexagons;
(vi) P consists of 1 quadrangle, 4 octagons and 8 hexagons;
(vii) P consists of 3 quadrangles, 6 octagons and 4 hexagons.

Proof. A small computer program quickly finds all possibilities (since A is
a very small graph). O

The systems of hexagons found in case (ii) are described in detail in
Section 4.

Our classification will be in three parts corresponding to the possibilities
for the non-singleton components of the u-graphs: (i) always a quadrangle,
(ii) always a hexagon, (iii) somewhere an octagon occurs. [Note that if no
octagon occurs, and for some point ¢ we have case (i) for the system of
polygons on I'(z), then the same holds for the neighbours of z, so that case
(i) holds everywhere.]

3. Quadrangles only

In this section we assume that I' is a locally A graph in which all non-
singleton components of u-graphs are quadrangles, and conclude that I' must
be isomorphic to one of the graphs £ (on 36 vertices) and T (on 108 vertices)
mentioned in the introduction.

Since any K12 is in a unique octahedron, we find two (flag transitive)
Buekenhout-Tits geometries of type

C
o—CcC— —— U0
1 1 1 2
points edges triangles octahedra

It is not difficult to find these graphs explicitly (essentially by re-
constructing the distance-distribution diagram given earlier), but using the
abovementioned result by Soicher we get the classification almost for free. Let
T be the universal cover of ' modulo triangles. Then T is locally A and is
triangulable. Starting with £ we find £, and by Soicher [3] we have ¥ ~ T.

Lemma 3.1 '~ T.

Proof. Given an isomorphism (really, isomorphic embedding) ¢ : ¢t — T
(with z € T') and a neighbour ¥ of , there is a unique isomorphism ¥ : y* —
T such that ¢¥(z) = ¥(z) for z € z+ Ny* (because Aut A is vertex transitive
and its vertex stabilizer is Sym(4) with natural action on the neighbours of
the fixed vertex). Fix a € I' and an isomorphism ¢, : a* — T. For each path
T =an~..~7Yy~ zwe find a unique isomorphism ¢, : 2* — T, using the
above recipe: ¢r = ((x, ), where mo is the path a ~ ... ~ y. Define a map
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@ : T — T by ¢(2) = @x(2) for any path 7 from a to z. As soon as we have
shown that ¢ is well-defined, it is clear that it is the required isomorphism.
(Indeed, it is a covering map, and T has no proper covers for which triangles
lift to triangles.) Since T is triangulable, it suffices to show that for any triangle
T =a~ b~ c~ awehave pspca = pa. (Note that by definition @apa = @a.)
Or, equivalently, it suffices to show that @,u(z) = wac(z) for z € T(b) N (<),
z # a. But for such a z the graph u(a,z) contains a quadrangle bcde (i.e.,
we have an octahedron {a,b,c,d, e, z}), and z is uniquely determined by both
{a,b,c,e} in b' and {a,b,c,d} in c' (and the same holds for the images of
these points in T'), so indeed ¢q5(2) = @ac(2). a

Thus, I" is a quotient of T'. Since T and I' are locally isomorphic, the
vertices of a fiber have mutual distance at least 4, and from the distance-
distribution diagram of T we see that ' ~ T or I’ ~ X.

4. Hexagons only

Considering A as the nonincidence graph of the Fano plane (X, L), we can
describe the 84 hexagons as follows: given an edge of A, i.e., an antiflag (z, L),
we have the hexagons:

type I: 3 Lines on z and 3 Points on L

type Ila: 3 Lines not on = and distinct from L and 3 Points on L

type IIb: 3 Lines on ¢ and 3 Points not on L and distinct from z.

An antipolarity o of (X, L) is a permutation of X U £ interchanging
X and £ and such that ¢ € o(y) if and only if ¢ # y and y ¢ o(z) (for
z,y € X). The Fano plane has 8 antipolarities (all conjugate under L3(2)); if
we represent the Fano plane by Points 7 and Lines i (i € Z7) with incidence
i+ 1,94 2,i+ 4 € 1, then the map interchanging 7 and 7 is an antipolarity.

Now we can describe the systems of 14 hexagons in A covering all 2-
claws. There are precisely 16 such systems (all conjugate under PGL(2,7)).
Given an antipolarity ¢ we have the system [c], consisting of all hexagons of
types I and Ila for the antiflags (z,0(z)), and the system [o], consisting of
all hexagons of types I and IIb for these antiflags.

Now let T’ be a locally A graph in which all non-singleton components
of p-graphs are hexagons. Let us label each I'(z) with A in such a way that
the system of hexagons is of type (o], for some o. This then determines which
half of I'(z) is called the set of Points and which half the set of Lines. We shall
prove below that if y is a Point in I'(z), then z is a Point in I'(y). Color an
edge zy red if y is a Point in I'(z) and green otherwise. Since A is bipartite,
no two adjacent edges have the same color. But then any triangle zyz yields
a contradiction.

Remains to prove our claim. Let y be a Point in I'(z). There are three
type I hexagons on y, belonging to the antiflags (a,o(a)) with y € o(a). Let
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us call the vertices in I'y(z) corresponding to these a'. There are three type Ila
hexagons on y, belonging to the same antiflags. Let us call the corresponding
vertices a”. Now in I'(y) we see six hexagons on z: for each Point z distinct
from y in I'(z) the graph u(y, z) contains the path k' ~ L ~z ~ M ~ k"
where K = o(k) is the Line on y, z, and p is the third Point on K, and L, M
are the other two Lines on p, with k € L. In I'(y) the three vertices z, k', k"
do not have a common neighbour (since by definition the hexagons k' and k"
do not have common Lines), so they are collinear Points or concurrent Lines.
But since for three choices of z the hexagon u(y, z) is a hexagon of type Ila
and consequently z, k', k" are Points, it follows that z is a Point in I'(y), as
desired.
This shows that no such graph T exists.

5. At least one octagon

Let T’ be a connected locally A graph and assume that at least one u-graph
in I' is an octagon. We shall prove that I' is uniquely determined. This is the
most difficult case, because the vertex stabilizer in AutI' is (much) smaller
than Aut A.

The induced octagons of A form one orbit under Aut A. (Viewing A as
the nonincidence graph of the Fano plane (X, £), the octagons are the sets of
4 Points not on L and 4 Lines not on z for the flags (z, L).) For any octagon
O in A, let O; be the set of vertices outside O adjacent to i vertices in O.
We have |O;| = 4 and O, induces a quadrangle, and |O4] = 2. We call the
two vertices of O4 the centres of O (in A). Each vertex of O is adjacent to a
unique centre of O.

Lemma 5.1 Let a,b be vertices of T such that O = p(a,b) is an octagon,
and let z,y be opposite vertices of O. Then u(z,y) is an octagon, with a,b as
a pair of opposite vertices. Precisely one neighbour of a in u(z,y) is a centre

of O in I(a).

Proof. Let z and y have common neighbours p, g in I'(a) and r,s in I'(b).
Then u(z,y) contains the paths p~ a ~ gand r ~ b~ s. But p, g, 7, s belong
to the same bipartite half of I'(z) so that p, ¢ are nonadjacent to r, s. a

From this lemma, it follows that every vertex z of I' occurs in some
octagon u(a,b): if a is in some octagon u(z,y), with opposite point b, then
O = p(a,d) is an octagon, and all vertices of I'(a) \ O occur in some octagon
p(u,v) for opposite vertices u,v of O. Since I is connected, the claim follows.

Lemma 5.2 Let a,b be vertices of I such that O = p(a,b) is an octagon.
Let z,z' be opposite vertices of O, and let c,d be the centres of O in I'(a)
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and T'(b), respectively, that are adjacent to z,z'. Then c and d are opposite
vertices in the octagon u(z,z').

Proof. Suppose not, and let u,u’ be the other two vertices of O adjacent
to c and d. For z = z,2’, u,u’ we see in T'(z) that a and b belong to the same
bipartite half, and hence, since a ~ c and b ~ d, the vertices ¢ and d belong to
the same bipartite half, so that z is not isolated in p(c, d). Therefore p(c,d) is
an octagon. Let u be the vertex opposite  in this octagon, and consider the
octagon u(z,u). If r denotes the common neighbour of z and u in O, then
gz, u) contains the path ¢ ~ a ~ r ~ b ~ d. Let s be the vertex opposite a in
u(z,u), so that s ~ d. Then p(a, s) is an octagon with z and u opposite, and
either c or r is a centre of it in I'(a). If ¢ is centre of x(a, s), then u(a, s) has
a path ¢ ~ ¢t ~ ¥’ in common with O, impossible. Thus r is centre of u(a, s),
and if Oy is the quadranglee ~ f ~ g~ h ~ e with e ~ 2, f ~ r, then u(a, s)
contains the path £ ~ e ~ f ~ g ~ u. Now interchange the réles of z,u and
z',u'. We find for some s’ that u(a, s') contains the path 2’ ~ e~ f ~ g ~ v/,
But then e ~ f ~ g is covered twice. Contradiction. o

Let O = p(z,y) = abeda’d'c’d’ be an octagon. Call the edge ab of O
thick if b is a centre of the octagon u(a,a’) in I'(a), and thin otherwise. The
previous lemma implies that if b is a centre of u(a,a’), then ¥’ also is, and a
is a centre of u(b, '), so that the concept thick is well-defined. Each octagon
p(z,y) has four thin and four thick edges (and these alternate).

Lemma 5.3 Let a,c be vertices at distance 2 on an octagon O = pu(z,y)
(say, a ~ b ~ ¢ in O). Then p(a,c) is a hexagon zbyybz and u(z,y) is an
octagon O. If ab is thick in O, then cb is thick in O.

Proof. Let Z and § be the centres of O adjacent to a,c in I'(z) and I'(y),
respectively, and let b be the common neighbour of a and ¢ in the octagon O.
Then p(a,c)is as claimed. Let O contain the path abcda’ and let O contain the
path abcda’. Then similarly u(a’, c) is the hexagon zdygdz. Let O' = p(c,c').
Looking at I'(c) we see that the common neighbour of z and y in O} is adjacent
to the common neighbour of Z and 7 in O}. Thus, both pairs {b, b} and {d, d}
have one point in O} and one point in Of. Thus, bc is thick in O if and only
if bc 1s thin in O. a

Lemma 5.4 Let O' = p(a,a’) be an octagon with opposite vertices z,y and
let v be the centre of O' in I'(a) nonadjacent to z,y. Let O = u(z,y) contain
the path a ~ p ~ g, where ap is thin and pq thick. Then v ~ g.

Proof. Let O = abcda'b'c'd’ with ab thick, so that p = d' and ¢ = ¢
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Following the notation of the previous lemma, we see in O = u(z,7) the path
a ~ b~ ¢ with cb thick, and vertices a’, ¢/, with ¢’ opposite c. In O’ we have
thick edges zZ and y7, so that v € O. Now v ~ a, and av is a thick edge of
0,sov #band hencev ~c' =gq. a

Let O = pu(z,y) = a'd'dd'a"b"c"d” be an octagon in I'(z). Let Oy =
{A, B} and O; = {a,b,c,d} with A ~a',d,a",c" and a ~ b~ c ~ d ~ a and
a ~ a,a"; b~ Vb etc. Let moreover the edge a'd’ be thick in O. We can
now find all polygons in I'(z). First of all we have the octagon O:

alblcldla”bllclld".

Next we have the four hexagons u(z,m) for m at distance 2 from z in the

Aa'b'bb"a"
aa/b/Bb//a//
Ac'd'dd"c"
cc'd' Bd''c".

Let for £ € {a,b,c,d} the vertices f’" and ¢"" be the centres of u(¢',¢")
adjacent to ¢’ and ¢”, respectively, but not adjacent to z,y. By our last
lemma we have a/// ~ C", al/// ~ Cl,/b”l ~ dl’ bllll ~ d//’ C/ll ~ a/, c//// ~ a//’

d" ~ b", d" ~ b'. This forces the f(y’llowing paths:

p(z,a™) aa’Ac”b”// and u(z,d"): dd Bb'c"
p(z,a"): aa"Ac'd) and p(z,d™): dd"Bb'
w(z, b"): b'Bd'a’ and p(z,"): c"Aad
w(z, b)) : bY'Bd"a’ and pu(z,c"): cod'Ad'd".

Now we have seen all 2-claws on A and B, and on the vertices of O only the
2-claws aa'd”, dd"a’; bb'c', cc'b’; ccb”, bb'c"; dd'a’, aa"d' are not yet covered.
Concerning each of these pairs of 2-claws, there are two possibilities: either
they form a quadrangle together, when two of the above u-graphs coincide to
form an octagon, or they are covered by hexagons. In no case is a 2-claw in
O, covered, so we also need the quadrangle

abcd.

Since the edges of O, must be covered exactly twice by other polygons, we
have either "' = ", ¥ = " or a"' = d", /" = d"". By symmetry we may
assume that we are in the first case. Thus, we have octagons:

bb'Bd'a" Ac"c
bb"Bd"a' Ac'c.
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We have now seen that I'(z) contains 3 octagons, namely u(z,y), u(z, b")
and p(z, b""). Moreover, u(b",b"") is again an octagon (since 4" and 4" are
centres of u(b,b") adjacent to the same vertices of that octagon). Since y
was arbitrary, any pair in {z,y, ", ™} determines an octagon. In this way
we find a partition of I' into groups of size 4, let us call them tetrads, such
that any two vertices from the same tetrad determine an octagon (and all
octagons occur in this way).

Next, consider the tetrads {z,y, ", 4""} and {-, 4,",b'} or {-,b,d/,a"}.
We see that if {p1, p2, p3, pa} and {q1, g2, g3, g4} are tetrads, with gs, g4 opposite
in p(py, p2), then (for some appropriate ordering of {q1,92, 93, 94}) 4:,q; are
opposite in u(pi,pi) for any choice of distinct 2,7, k,[. Let us call two such
tetrads adjacent when this situation occurs, i.e., when each point of one is
adjacent to three points of the other.

The graph T on the tetrads is regular of valency 4, and is locally a 3-
path, and hence is a quotient of the graph on 7 defined by m ~m+1,m+2.
Call two tetrads close neighbours when they have two common neighbours in
T (i.e., are represented by m and m £ 1).

Consider the tetrads {z,y, 4", 5"} and {-, 4, 4", b’} and {-, B, ¢, c"}. We
see that if P = {p),p2,p3,pa} and @ = {q1,92,¢3,94} and R = {ry,72,73,74}
are tetrads where @ and R are close neighbours of P, and p; # ¢;,7;, then
q1 7% 1. Thus, the graph is a direct product T x I, (possibly with a Sym(4)-
twist in case |T| < 00), and (¢,1) ~ (t£1,7),(t£2,7) for 7 # 7. This accounts
for 12 neighbours of every point. For z the remaining two neighbours are a
and d, so that (¢,7) ~ (t £ 4,7). Finally, a ~ d, so that |T'| = 12 and no twist
occurs.

This completes the determination of T'.
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A theorem of Parmentier
characterizing projective spaces by
polarities

F. Buekenhout

Abstract

We present a remarkable result obtained in 1974 by Anne Parmentier
with some help of the author. This result has remained unpublished
and unknown since then. The idea is to axiomatize and characterize
the structure consisting of a pair (P, x) where P is a projective space
and 7 is a polarity of P in such a way that the system of axioms
weakens the usual requirements on P.

1. Introduction

We start with a linear space P = (P, L) namely a set of points P, equipped
with a family £ of subsets of P, called lines, such that every pair of points is
contained in a unique line and every line has at least two points. A subspace
of P is a set of points X such that for any distinct points p,q in X, the line
pq containing p and gq is contained in X.

We now consider a symmetric relation = on the set P. If p € P, p™ denotes
the set of all z € P such that prz. We call p™, the “polar hyperplane” of p.

If X C P, X™ denotes the set ﬂ .
peEX
We shall say that the pair (P, #) is a linear space with polarity if the following

hold:

(1) for every line £ of P and point p of P, either £ C p™ or £N p™ is a point.
With other words, each p™ is a “projective hyperplane” or “geometric
hyperplane” of P.

(2) for each line £, £ = (£™)™

(3) for each point p, p™ # P.

Theorem. ([3]) If (P,) is a linear space with polarity, then P satisfles the
Pasch-Veblen axiom i.e. P is a projective space (with possibly lines of two

points). Consequently, if all lines of P have at least three points, P is a
projective space in the classical sense. If moreover, P is of finite dimension,
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then 7 is a polarity in the classical sense.

The proof given by Parmentier was rather long. In [1], there is a shorter
proof. It will be given here. Recently ([2]), the result appears as a consequence
of a more general theory.

2. Proof of the theorem

1) For each point p, p™ is a maximal proper subspace of the linear space P,
in view of (3) and (1).

2) We shall construct a dual space P*.

3)

Lemma. If a,b are distinct points and if ¢ € P\(a™ N b™) then there is a
unique point y € P such that y™ contains ¢ and a™ N b"™. Moreover y is on the
line ab.

Proof. The hyperplane =™ intersects the line abin a unique point y because
z & a"Nb". Then (a™Nb™)" contains a, b hence y and so y™ contains a™ N b™ as
well as z. Now, assume that z were a point other than y such that 2™ contains
a™ N b" and z.

Put £ = ab. Then a™Nd™ = £~ and by (2), (£7)™ = ¢, hence z € £ and moreover
z€z", thus z = 5.

4) If a, b are distinct points, then a™ # b™. Otherwise, let ¢ € P\a™. Then ¢*
intersects the line ab in some point p and p™ contains o™ and ¢, hence by 1),
p™ = P, contradicting (3).

5) Let the dual P* be defined as a pair (P*, £L*) where P* is the set of all p™,
p € P and a member of £* is any set £* = {p™|p € £} where £ € L.

6) Now P* is a linear space.

7)
Lemma. P* is a projective space.

Proof. It suffices to check the Pasch-Veblen axiom.

Let a,b,c,d, e be distinct points of P such that a™,b™,c™ and a™,d",e™ are
collinear in P* on distinct lines. By 4), a™, b, ¢",d",e™ are distinct as well.
By the definition of £*, a, b, c and a, d, e are collinear in P.

Here b™ N d™ is not contained in ¢™ N e™ for otherwise (bd)™ C (ce)™, hence
(bd)™ 2 (ce)™ which means bd = ce by (2), but then a™,b",...,e™ would be
collinear.

Then, let = be a point of b N d", not in ¢ N €. Lemma 3 provides a unique
point ¥ in P, such that y™ contains z and ¢™ N e™. Moreover y € ce, hence y~*
is collinear with ¢™ and e”.

We claim that y™ is also collinear with ™ and d". Let z € b"Nd~, z # z. The
line zz is in "N d" and it intersects a™ in some point u. Therefore u € a™ N b™
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and to a" N d™ and so u € c" N e™. Thus z # u. Consequently zz = zu and
since y™ contains z and ¢™ N e™ we see that y™ contains z, hence it contains
"N dr.

8) P is a projective space. Indeed, if a, b, ¢, d, e are distinct points, such that
a,b,c and a,d, e are collinear on distinct lines, then Lemma 7) provides some
y™ collinear with ™ and d” and with ¢ and €™ in P*, hence y is collinear
with b and with cand e, in P. ad
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1.

Geometries with diagram .L.F;
F. Buekenhout O.H. King

Abstract
We study flag-transitive geometries with diagram

oL o P 4

0 1 2
The residues of 0-, 1- and 2- elements are respectively dual Pe-
tersen graphs, generalised digons and finite linear spaces. The finite
linear space must be either a projective plane, in which case there are
known to be exactly two geometries, or a complete graph on 4 vertices.
We show that in the latter case there are no geometries with a flag-
transitive automorphism group acting primitively on the 2-elements.

We give examples where an automorphism group acts imprimitively.

Introduction

Let T' be a flag-transitive, residually connected geometry with diagram

and let G be a flag-transitive subgroup of Aut(I'). We call the 0-, 1- and
2- elements respectively points, lines and planes (or circles). The diagram
indicates that the residue of a plane is a finite linear space L, the residue of a
point is a Petersen graph with planes as vertices and lines as edges, and the
residue of a line is a generalised digon. We assume that I satisfies a natural

oLl o P

0 1 2

condition: that a pair of points is incident with at most one line.

Given any point z, each line in Res(z) is incident with 2 planes and each
plane with 3 lines; and given any plane m, each point in Res(w) is incident
with 3 lines and each line is incident with » + 1 points for some number n. It
follows that each line is incident with two points and 2 planes. The diagram

may be written

oL o P

n 2 1

with the types 0,1,2 implicit from left to right. The finite linear space

oL o

n 2
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is a design with parameters 2 —(v,n+1,1) for some v, and the design param-
eter r is given as 3. Fisher’s Inequality applies to yieldr > n+1,ie.n =1
or 2.

If n = 2 then L is the projective plane of order 2 and our diagram
is equivalent to o—£ o— o (i.e. with the types written in the order 2,1,0
from left to right). This is the diagram of a P-geometry. S. Shpectorov ([4])
has shown that there are exactly two such geometries, and they are associ-
ated with the groups M,, and its triple cover Mj,. In the first geometry the
automorphism group M,, acts primitively on 2-elements, but in the second
case the group M, acts imprimitively. We should mention that S. Shpectorov
and A.A. Ivanov have completely determined P-geometries of arbitrary rank,
although not all their work is yet published (see for example [2] , [3]).

If n = 1 then L is the complete graph on 4 points. We write L as cin this
case and refer to the planes of T as circles. Henceforth we assume that n =1
and ' has diagram o—<—o—%"6 . We prove that there are no geometries
for which a flag-transitive automorphism group G acts primitively on circles.
Our approach uses results of Wong ([5]) and Gorenstein and Gilman ([1])
to reduce to the case where G = PSL(2,q). We then show that PSL(2,q)
admits no geometries with this diagram.

Now assume that G is a flag-transitive subgroup of Aut(T'). For the
present we do not assume that G acts primitively on circles.

Given T, the point-line graph T is a graph whose vertices are the points
of T with distinct points z, y adjacent in T if they are incident to a line of
T. The action of G on T is (vertex) transitive and since a point is incident
with 15 lines and a line with 2 points, T is regular of valency 15. The residual
connectedness of T ensures that T is a connected graph. The following is the
Petersen graph with its edges labelled y,,...,715 and with alternative labels
¥,b,¢c,d,e for y,...,y5. We shall use this graph and refer to the labels in
making observations on the line graph of the Petersen graph.

Diagram 1
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2. Preliminary Results

Lemma 2.1 Let T be the neighbourhood graph of a vertex = of T, ie. Ty
is the full subgraph of I on the fifteen neighbours of z, and let G, be the
stabilizer in G of z. Then T, is regular and contains a subgraph isomorphic

to L (the line graph of the Petersen graph) and preserved by Go.

Proof. For any distinct vertices y;, y; of To, the flag-transitivity of G implies
the existence of g € G such that g(z, zy:) = (z, zy;) (where zy;, zy; are the
lines of I" incident with z,¥; and z,y; respectively), ie. g € Go and g(y:) = y;.
Thus Gy is transitive on the vertices of 'y and so Ty is regular.

In the residue of z in I, if two lines, £; and 4;, are incident with a
common circle C' then the second points, y; and y; say, of 4; and ¢; are incident
with C and ¥;, y; are incident with a line £. Now let 4;,...,4;5 be the lines
of T' incident with z and let 3, ...,¥15 be the corresponding second points.
Then ¥, y; are adjacent in T'y whenever £, £; are incident with a common
circle in the residue of z. But Res(z) is a Petersen graph P with circles as
vertices and lines as edges, so the vertices of Ty correspond to the edges of
P and the adjacency just described corresponds to adjacency of edges in P.
Thus we have a copy of £ in 'y preserved by Go. Of course Ty may contain
further edges, but these do not concern us here. O

Lemma 2.2 If Gy represents the stabilizer in G of a point ¢ then Gy = As
or Ss.

Proof. Given z, its stabilizer Go acts flag-transitively on the Res(z). The
lines and circles of I' incident with z form a Petersen graph with the lines
as edges and the circles as vertices. The only groups acting faithfully and
flag-transitively on the Petersen graph are Ay and S, so it remains to show
that Go acts faithfully.

Let £ be the copy of the line graph of the Petersen graph described in
Lemma 2.1, lying inside T'y. The vertices of £ are points 3, ...y15 of ' but are
also edges of a Petersen graph, hence the labelling in Diagram 1. It is clear
that any automorphism of £ that fixes a vertex and its four neighbours fixes
every vertex of £. Let g € G, fix every vertex of Ty and let y be any vertex
of I'g. Then the neighbourhood graph T, of y in T' contains a subgraph £,
isomorphic to £ , and g € Gy,. If y corresponds to the edge y; in Diagram 1,
then £; contains z, and the four neighbours of z in £, are b,c,d and e. Since
all five vertices are fixed by g, all vertices of T, are fixed by g. Thus g fixes all
vertices of T, for all y at distance 1 from z in T'. Given that T' is connected,
an inductive argument shows that g fixes every vertex of I'. Hence g = 1 and
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G, is faithful on T,. O

Lemma 2.3 Let (z,¢,C) be a flag in T with Gy, Gy, G; the stabilizers in G
of z, £ and C respectively.

(a) If Go = S5 then
(i) G, =2xDsg
(ii) G, =2.5,
(iii) GoN Gy = Dy
(iv) Go NGy, =2x 53
(v) GinG, =23
(vi) GoNG1 NGy =22,
(b) If Gy = Ay then
(i) Gy=Dgor2?
(i) Gy =8,
(iii) GoN Gy = 22
(iv) GoN Gy = S,
(v) GiNG,=2?
(v) GoNGiNGy =2,

Proof.

(a) Let y be the second point incident with £ (z being the first), then for
any g1,92 € Gi \ Go, 192 € Go N G,.
If y is as represented in Diagram 1 then Gy N G, permutes b,c,d, e,
and in view of the discussion in the proof of Lemma 2.2, G, N G, acts
faithfully on {b,¢,d,e}. One observes that the possible permutations
in Aut £ are (bc), (de),(bd)(ce) and products, and that all occur. Thus
Go N G, has order 8, and the only possibility in S5 is Go N Gy = Ds.
This proves (iii).
Since G is flag transitive it contains elements mapping (z,¢,C) to
(v,£,C),ie. Gi £ Go. Hence GoNG, is of index 2in G, and G, = Dg.2.
We may take C to be incident to b,c and let C; be the circle incident
to ¢, z, d and e. The following diagram illustrates the situation:

Diagram 2
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We know that £ = zy is incident with just two circles, C and C,, so any
element of G either fixes C and C) or interchanges them. In any event,
the vertices z,y, b, ¢, d, e are permuted. Let g € G, switch z,y, then we
may multiply by (some of) (bd)(ce), (bc), (de) to get an element of G,
switching z and y but fixing b, ¢, d and e, so G, contains the permutation
(zy). This permutation commutes with GoNG; so Gy = 2 x Ds, proving
(1). In G1 N G; we have commuting permutations (zy), (bc) and (de),
and we observe that (bd)(ce) ¢ G2, so G, N G, = 2%, proving (v).

Now let & € G, fix z,y, b and c then either % fixes d and e or it switches
them. If h fixes d and e then h = 1; if h(d) = e then h? = 1. Therefore
the kernel of the action of G, on {z,y,b,c} has order 2. Acting as a
subgroup of Sym{z,y, b, c} we know that Gy N G; contains the permu-
tation (bc). If we consider the flag (z,zb, C') then GoN G, also contains
(yc). Since Gy N G contains (zy) we conclude that G, acts as 54 on
{z,y,b,c} ie. G, = 2.5,. This proves (ii).

To get the structure of Go N G, we need to observe that Go acts im-
primitively on the vertices of £. In fact there is only one imprimitive
action and the blocks of imprimitivity are {y1,%10,¥12}, {¥2,¥s, ¥11},
{y3, 6,97}, (Ya,¥14, 15}, {¥s,¥s, ¥13} where 31,..., 15 are the edges in
the Diagram 1. The action of G on the blocks is transitive and faithful
so that Ss is realised as the full symmetric group on these five blocks.
If the blocks are labelled 1,2,3,4,5 respectively then the permutations
(de),(bc) and (cy) correspond to (45), (23) and (13). Thus Go N G
contains a subgroup isomorphic to 2 X S3. On the other hand Gy N G,
contains the kernel of G, on {z,y,b,c} and acts as S3 (at most) on
{y,b,c}. Hence Go N G; has order 12 and Go N G, = 2 x S3, proving
(iv).

Finally Go N G; NG, is a proper subgroup of Go N G, but contains (bc)
and (de), so Go NG, NGy = 22,

Let us start this time with G and consider the kernel of G; on {z, ¥, b, c}.
An element of this kernel acts on {z,y,b, c,d, €} as the identity or (de),
but as noted above, (de) corresponds to the permutation (45) on the
blocks of imprimitivity for Gy on L. Since (45) ¢ As we conclude that
the kernel of Gz on {z,y,b,c} fixes d and e as well, so is reduced to
the identity in G. We find that G, contains all permutations of {y, b, ¢}
and that Gy contains all permutations of {z,b, c}. Thus G = S, and
Go N Gz = §3, proving (ii) and (iv).

If we look at Gy N G, we find that the only permutations of {b,c, d, e}
lying in Go are now the identity, (bc)(de), (be)(cd) and (bd)(ce), so GoN

G, = 22, proving (iii).
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Now G, again contains Gy N G, as a subgroup of index 2 so that G,
has order 8. If ¢ € G, switches  and y then, treating elements of G,
as permutations of {z,y,b,c,d,e}, we can multiply g by an element
of Go N Gy to get either (zy) or (zy)(bc). f we get (zy) then G is
generated by (zy), (bc)(de) and (bd)(ce), so G1 = 2°. If we get {zy){bc)
instead G; has five involutions and two elements of order 4 {of which
one is (zy)(becd)) so that Gy = Dg. In either case G; N G2 = 22 and
GoNG1 NGy 2. a

Lemma 2.4 Let (z,¢,C) be a flag of T' with Gy and G, being the stabilizers
in G of z and C. Then G is generated by Gy and Gs.

Proof. Let F =< Gy, Gy > . We show that F is transitive on the points of
T, from which it follows that F' = G.

We consider the action of F on I' and recall that T is connected. Let
A be the (vertex) orbit of F' containing z. We suppose that there is a point
not in A and arrive at a contradiction: we choose a point v not in A whose
distance from « is minimal amongst the points not in A. First observe that
G2 acts transitively on the four points: z,y,b and ¢ incident to C. Thus A
contains a point of Ty, but Gy acts transitively on the points of T so all the
points of Ty lie in A. Therefore the distance from z to v is at least 2.

Let u be a point adjacent to v such that dist(u,z) = dist(v,z) — 1, and
let w be a point adjacent to u such that dist(w,z) = dist(u,z) — 1. Then
u,w € A, so G, < F (where G, is the stabilizer of v in G). However G, is
transitive on the points adjacent to u, so » and w lie in the same orbit of F,
a contradiction to v ¢ A.

Hence F is transitive on the points of I' as claimed, and F = G. i

3. Reduction to PSL(2,q)

Result 1. (W.J. Wong [5]) Let G be a primitive permutation group on a
finite set (), such that the stabilizer G, in G of an element a of ) has an
orbit of length 3. Then G is isomorphic to one of the following groups with
G as shown:
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G Ga
G(3,p) (prime p # 3) 3
G(6,p) (prime p # 3) S3
A5 S
Ss Dy
PGL(2,7) D,
PSL(2,11) D.,
PSL(2,13) Dy
PSL(2,q) (prime ¢ = £1modl6) | S,
SL(3,3) Sy
AutSL(3,3) Sy %2

Theorem 3.1 If G acts primitively on the circles in ' and if T' has an even
number of circles then G = PSL(2,q) for some prime ¢ = +1 mod 16, and
Go = As.

Proof. Let  be the set of circles and let C € . Then by Lemma 2.3,
Gc = 2.5; or S4. Since G is primitive on 2, {C} is the only trivial orbit
of G¢, and since |§}| is even there must be another orbit of odd length. But
whether G¢ be 2.5; or S, the only possibility for an odd orbit length is 3.
Thus G¢ has an orbit of length 3 and Wong’s Theorem (Result 1) applies.
Note that SL(3,3) and AutSL(3,3) have orders 5616 and 11232 respectively,
so neither contain As and neither are candidates for G. The only possibility
that remains is PSL(2,q) with G¢ = Sy, ie. Gy = As. O
Result 2. (Gorenstein and Gilman [1]) If G is a finite simple group and if
a Sylow 2-subgroup of G has nilpotency class 2 then G is isomorphic to one
of: Ly(q), g = 7 (mod 16); Us(2"), n > 2; Sz(2"), n odd, n > 2; L;(2"),
n > 2; PSpy(2™), n > 2; Ag.

The following table gives the orders of the groups listed above together
with the order of a Sylow 2-subgroup.

G Order of G Order of
Se Sz(G)

Ly(q), =17 (mod 16) 9-(9_—13-(3111 8

n In n_ In n
U3(2 ), (TL > 2) 2 !2(3’2'1‘+Mf) +1) 23
52(22m+1), (m _>— 1), 24m+2(24m+2 + 1)(22m+1 _ 1) 24m+2

n Info2n __ In_ n
Ly(2™), (n > 2) 2—(——X~—12(3,21_f) ! 23
PSpy(2™), (n > 2) 24"(22" — 1)(24" -1) 24n
Ay 2520 8

79



BUEKENHOUT AND KING: GEOMETRIES WITH DIAGRAM LP*

Lemma 3.2 If G acts primitively on the circles in I and if T’ has an odd
number of circles then either G is simple or Go = S5 and G has a simple
subgroup of index 2.

Proof. Suppose that G has a proper, non-trivial normal subgroup H. If
H < G, then since G acts transitively on circles H fixes each circle. For each
point z, we can find two circlesin Res(z) that have no other point in common.
Clearly H then fixes z. Thus H fixes all points so H = 1, contradiction.

Since GG acts primitively on circles, G is a maximal subgroup of G.
Hence HG, = G and |G/H| < 48. But now consider Gy : since Go N H
is normal in Gy, |Go/Go N H| = 1,2 or > 60. If |Go/Go N H| > 60 then
|GoH| = |Go/Go N H| - |H| > 60|H| which is impossible. Therefore either
Go = As and Go < Hor Go = Ss and Go N H = S 0or As. f Go < H
then H contains every point stabilizer (G being transitive on points), and
in particular (with reference to Lemma 2.3) H contains Go and Gy; clearly
Go N Grand G, N G, generate G, so G, < H, contradiction. If Gy = Ss and
GoNH = As then also G,NH = A5 and GoNHNG, and G,NHNG; generate
a subgroup of G, which acts as S4 on {z,y,b,c} (reference to Lemma 2.3);
either we have the whole of G5, in which case G; < H and again we have a
contradiction or |G, N H| = 24, ie. H has a subgroup isomorphic to Sy, and
|G/H| =|G2/G2 N H| = 2.

Thus if G is non-simple then it has a normal subgroup H of index 2.
Moreover G, N H is transitive on the neighbours of z, so the group generated
by Go N H and its conjugates in G is transitive on the points of T’; this
latter group must be the whole of H. In other words H is generated by the
unique subgroups of index 2 of point stabilizers in G. It follows that H is the
only proper non-trivial normal subgroup of G. Let @ be a minimal normal
subgroup of H then the G-conjugates of () generate a normal subgroup of
G, ie. generate H. Thus H is a direct product of isomorphic minimal normal
subgroups. However T' has an odd number of circles so |G|/|G,| is odd, ie. a
Sylow 2-subgroup of G has order 16 and a Sylow 2-subgroup of H has order
8; moreover H has a subgroup isomorphic to S; so a Sylow 2-subgroup of H
is isomorphic to Dg. This situation cannot occur if H is a direct product of
two or more isomorphic subgroups, so H = @ and H is simple. a

Theorem 3.3 If G acts primitively on the circles in T and if T' has an odd
number of circles then either G = PSL(2,q) or G has a subgroup H of index
2 isomorphic to PSL(2,q) acting flag-transitively on I'. In each case ¢ is a
prime power = +7 mod 16.
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Proof. |G|/|G;| is odd so a Sylow 2-subgroup of G has order 16 (resp. 8)
if Go = S5 (resp. Go = As). Therefore G; is a Sylow 2-subgroup of G. We
know that G; = 2 x Dg when Go = S5 and G; = Ds or 23 when Go = A,
but in the latter situation G, = S, and so G has a subgroup isomorphic to
Dg. Hence G; = 2 x Dg or Dg, ie. a Sylow 2-subgroup of G has nilpotency
class 2.

By Lemma 3.2, either G is simple or Gy & S5 and G has a simple
subgroup of index 2.

Suppose that G is simple. From the list following Result 2 we observe
that the only possibilities for G are PSL(2,q) or A7 with G; being Ds in
each case. In the case of A7, however, S, is not a maximal subgroup (being
contained in a subgroup isomorphic to Ag). There remains only PSL(2,q)
with ¢ = 47 mod 16.

Now suppose that Go = S5 and that G has a simple subgroup H of
index 2. We saw in the proof of Lemma 3.2 that H must be transitive on the
points of I'. We know that H N Go = Aj and that this group is flag-transitive
on Res(z), so H is flag-transitive on I'. Now by the first part of this Theorem,
if H is a simple flag-transitive group on I' then H = PSL(2,q) with ¢ = £7

mod 186. |
4. PSL(2,9)
Theorem 4.1 There are no geometries with diagram o—<—o—2"c on which

PSL(2,q) acts flag-transitively.

Proof. We suppose that there does exist such a geometry I' and reach a
contradiction. The Sylow 2-subgroups of PSL(2,q) are dihedral so G; = Ds,
Go = As and G, = S, (alternatively, PSL(2,q) doesn’t have subgroups
isomorphic to S5 or 2.5;). Moreover, for PSL(2,q) to contain a subgroup
isomorphic to S; we require ¢ = +1 mod 8.

The groups Go, G, and G, satisfy the conditions (i)-(vi) set out in
Lemma 2.3(b). If ¢ = —1 mod 8 then ¢> = 1 mod 8 and Go, G and G,
may be considered as subgroups of PSL(2,4?). As our objective henceforth
is to show that the conditions of Lemma 2.3(b) cannot be satisfied, we may
assume that ¢ = 1 mod 8.

Recall from the proof of Lemma 2.3 that G; may be represented as
a permutation group on the letters {z,y,b,¢c,d,e}. Let a = (zy)(becd) and
B = (zy)(bc); then G, has a presentation < a,8:a* = 8% =1, fa =38 >
and G1 N Gy and G, N G, are given by {1, of, a?, B} and {1, B, a?, o6}
respectively, with Go N G; N G, = {1,a?} being the centre of G;.

We set up the elements of G as 2 x 2 matrices in the following way: each
element of G may be represented by an element of SL(2, q) acting naturally
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on a 2-dimensional vector space V, and a basis for V may be chosen with
respect to which

where © € GF(q) is chosen such that 12 = ~1,
Now G} is a subgroup of Cg(a?), the elements of which are represented

by
S Y I
0 A1 ¥ a0

where A ranges over the non-zero values of GF(q). Clearly Cg(a?) is dihedral
of order ¢ — 1, with two elements of order 4, namely

T 0 71 0
o a7 2

where 7 = pl=1)/8 for some primitive element p of GF(q). We may choose p

so that
T 0
@=1o 1

and 7 such that 72 =i, At present

0 A
(]
for some A € GF(q)\{0}, but we may refine the choice of basis for V such
that
0 1
=[5 o]

and this may be done without changing the representation of a (the refine-
ment may be simply a scaling of the second basis vector).

We now turn to G, which acts as the full symmetric group on {z,y, b, c}
and B = (zy)(bc) is in the normal subgroup of G, of order 4. We can begin
to realize the elements of G; as 2 x 2 matrices by noting that Cg,(B8) is
isomorphic to Dg and that C¢(B) consists of the matrices

[—A#i]md[i —ﬂ

where X, u,0,p € GF(q) satisfy A2 + u2 =1 = —6% — % Of course Cg(B) is
dihedral of order ¢ — 1 and has two elements of order 4, namely

ESE i
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where j € GF(q) satisfies j2 = 1/2 (such j always exists for ¢ = 1 mod 8).

Let o

J 7

T [ 5 j }

and note that o? is a non-central involution in Cg,(8), then ¥* = ( and
Cqg,(B) is generated by v and a?. Moreover Cg,(8) has two subgroups iso-
morphic to 22, namely {1,42,a?,v2a?} and {1,~42,va%,7%a?}; the first of
these is just {1, 8, a?, a?B}, ie. is G, N G,. On {z,y,b,c}, G1 NG, is given by
{zd, (zy)(bc), (bc), (zy)} and so is not normal in G,. It follows that the normal
subgroup of G, of order 4 is given by {1,7%,v7a%,7%a?}, indeed G, will be the
normalizer in G of this subgroup.

Recall that Go N G, = {1, aB,a?,a®B} and that Go N G, = Ss, so that
if 6 is one of the two involutions of Gy N G, not in G; then aBd € Go. If we
represent the blocks of imprimitivity of Go on T by 1,2,3,4 and 5 (containing
¥, b,¢,d and e respectively) then aff = (24)(35) or (25)(34) and § = (12)(45)
or (13)(45); any combination gives the order of a3§ as 5. We have a matrix
representative for af, and § is an involution normalizing {1,v?,va?,y3a?}.
We know that G, has nine involutions of which five centralize 8; by consider-
ing G, as Sym{z,y,b, c} where B = (zy)(bc) we see that the only involution
of G, centralizing § that also lies in Gy is the one given by the permutation
(bc) and this we may identify as a?. Since § ¢ G; we conclude that § does
not centralize 3, ie. §7188 = ya? or ¥%a?. As an involution, § is represented
by a matrix of the form

25
e —n

for some 7,&, € € GF(q) satisfying —n? — £ = 1. The possibility 8§ = §ya?

Tl sl Sl

and the possibility 86 = §v3a? gives

0 Lifn & _n & |7 ~3|[¢ O
-1 0 € —7 € —7 j 3 0 — |’
Write k for 5 (so that k* = —1/2) and consider the + option in the
first equation:
[ € ~n}:k[n—£ ~(n+£)}
-n = nt+e n-—e¢

from which e = —(k+1)/k =9(2k - 1), { = —n(k —1)/k = —n(2k + 1) and
n? = —1/4, ie. p = £1/2. Thus
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5:”[%1_1 ~(1—+12k)}' M)

Similarly the — option in the first equation and the + and — options
in the second equation yield:

5:’7[~(1i2k) 2k—~11} @)
52’7[2k1+1 1:1%} 3)
5=”[1—12k ltfk] (4)

The four cases gives af§ as follows:
afé = +7/2 [ i(%_; D 2,: ) } (1)
aBs = £1/2 [ Rk 2 T } (2)
afé = +7/2 [ i(2’°_J1r1) 21:1] (3)
ofb = +71/2 [ i(l__l%) _(2;1 ) } . (4)

We calculate:

(ap8)” = £7°/8 [ e 33)(2 Y (2k — 3:;21' —1) ] (1)
(aB8)® = £7°/8 [ 8- 2k3)(2 Y —(3+ 22;(21' ~1) ] (2)
(af6)” = £7°/8 [ 2= 33) ¢=9 (3+ 213221' -1) ] (3)
(aB8)" = £7°/8 [ IR (3— 213221' _1) } NS

In each case we reach the same conclusion: q is a power of 3.
Hence we are reduced to the case ¢ = 3% where a is even (since ¢ = 1
mod 8). Observe that —1/2 = 1 so k¥ = 1, ie. k = %1. Therefore in this
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particular setting a,/3,v and § all have coefficients in GF(9). Now a8, o?,
§ must generate Go, and v, a?, § must generate Gz, so Gp and G, both lie
inside PSL(2,9). By Lemma 2.4, < Go, G, >= G so G < PSL(2,9). However
the index of Go in G is then at most 6, ie. the number of points of T' is a most
6. This is impossible because T' has valency 15.
This concludes the proof of Theorem 4.1. O
We get:

Theorem. There are no flag-transitive residually connected geometries with
diagram o—<—o—2"0 for which the automorphism group acts primitively on

circles.

Corollary. There is exactly one flag-transitive residually connected geome-
try with diagram o—Z—o—2"0 for which the automorphism group acts prim-

itively on circles.

5. Circle-imprimitive Geometries

We now turn to some examples of geometries for which the group G acts
imprimitively on circles. We should like to thank D. V. Pasechnik, A. Pasini
and S. Shpectorov for helpful discussion which confirmed one example and
generated others.

We give four examples, three being quotients of the first.

Example 1

Let V be the vector space 2% over GF (2). We embed a Petersen graph P in
V with the edges and vertices of P being (some of the ) 1- and 2- dimensional
subspaces of V.

Choose a basis vy, ..., vg for V. The vertices of P will be 2-dimensional
subspaces A — J as given below and as marked on the graph, and edges are
appropriate intersections, some of which are marked on the graph by their
non-zero vector. Incidence is inclusion.

A=<v,vy> B=<wv3> C=<uv3vs>

D =<wvg,v5> FE =<ws,v1> F=<v+v3,v6>

G =<vy+v3,v1+v3+vs+vs+vs> H =< v3+ vg,v >
I =< vy +vs,v1 +v3 +vg > J =< v +vs5,v3+ vy + V6 >
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D Vs C
Diagram 3

It is not difficult to check that the stabilizer of P in SL(6,2) acts faith-
fully on P and is isomorphic to Ss.

We now construct a geometry T' as follows:

Let AG(6,2) be the affine space on the vertices of V. The points of T
are the 64 points of AG(6,2). The lines of I' are the 15 affine lines through
the origin that appear as edges of P together with all affine lines parallel to
these 15, so there are 480 lines in 15 parallel classes. The circles of I' are the
10 affine planes through the origin that appear as vertices of P together with
all affine planes parallel to these 10, so there are 160 circles in 10 parallel
classes. Incidence is inclusion. The group G = Autl' is V.Ss. It is then clear
that G is transitive on points of I' and that the stabilizer of the origin is
transitive on flags of P, so G is flag-transitive. Also G is faithful on T and T
is (residually) connected. The residue of the origin is P. The residue of the
circle A in Diagram 3 1s a complete graph because it contains the 3 marked
lines through the origin together with 3 parallel lines. Finally the residue of
the line {0,v,} contains the points 0,v; and the circles A, E.

Example 2

Consider further the action of S5 on V in Example 1. It has one fixed non-zero
vector: vz +v3 +vs + vs. Let V' be the quotient of V by {0, vy +v3 +vs + ve}.
In effect we are setting ve = vy + va + vs and taking v;,v,,...vs as a basis
for V'. We get an embedding of the Petersen graph in V'. The stabilizer in
SL(5,2) is again Ss and a construction analogous to Example 1 produces a
geometry with 32 points, 240 lines and 80 circles. The automorphism group
of this geometry is 2°.S5s.
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Example 3

In Example 2 we find that S5 has one non-zero fixed vector in V' : v; + vy +
v3+vs +vs. Let V¥ be the quotient of V' by {0, v, +vz +v3+vs+vs5}. In effect
we are setting vs = v; + vz + v3 + v4 and taking vy, ...,v4 as a basis for V.
We get an embedding of the Petersen graph in V. The stabilizer in SL(4,2)
is once more S5 and we arrive at a geometry with 16 points, 120 lines and 40
circles (and now the 120 lines are all the affine lines).

Example 4

Returning to Example 1 we can consider the action of A5 on V. It has 3 fixed
non-zero vectors: vy + vz + vs + e, V1 + V2 + v3 + v4 + vs and vy + vy + vs.
Let W be the quotient of V by {0, v; +v4+ve} then the Petersen graph may
be embedded in W but its stabilizer in SL(5,2) is As rather than S5. We
get a geometry on 32 points whose automorphism group is 2°.A4s. Thus this
geometry is not isomorphic to that in Example 2.
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Remarks on finite generalized
hexagons and octagons with a
point-transitive automorphism group

F. Buekenhout H. Van Maldeghem *

Abstract
We show that the only point-transitive representations of the groups
displayed in the ATLAS {2] on a finite generalized hexagon or octagon
are the natural ones.

1. Introduction.

Let T be a thick, finite generalized hexagon (resp. octagon) of order (s,t) and
G a group of automorphisms of I" acting transitively on the points. Assume
furthermore that G is almost simple, so there is a nonabelian simple group S
with

544G < AutS.

We want to show that “small” G are ruled out, in particular that S cannot
be a sporadic group. As a matter of fact, we consider all groups displayed in
the main section of the ATLAS [2]. Let us call these groups “ATLAS-groups”,
then we can formulate our main results as follows:

Theorem 1.1 If an ATLAS-group acts transitively on the points of a gener-
alized hexagon, then it is has socle G,(q) (¢ = 2,3,4,5) or *D4(2) and it acts
in the natural way on a ‘classical’ generalized hexagon or its dual.

Theorem 1.2 If an ATLAS-group acts transitively on the points of a gener-
alized octagon, then it is has socle 2Fy(2)’ and it acts in the natural way on
the ‘classical’ generalized octagon of order (2,4) or its dual.

Theorem 1.1 will be proved in section 3 and theorem 1.2 will be proved
in section 4.

*. This author is supported by the National Fund for Scientific Research (Belgium).
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2. Some known facts.

2.1. Generalized Hexagons.

Let T’ be a generalized hexagon of v points and order (s,t). Then v = (s +
1)(1 + st + s%t?), st is a perfect square ([3]) and s < t3 < s° ([4]). Also, the
rational number

st(s +1)(t + 1)(1 + st + s%¢?)
2s%t +t2s — st + s+t + (s — 1)(t — 1)v/st]

(1)
is an integer ([5]).

2.2. Generalized Octagons.

Let T’ be a generalized octagon of v points and order (s,t). Then v = (s +
1)(1 + st)(1 + s%t?), 2st is a perfect square ([3]) and s < t? < s* ([5]). Also,
the rational number

st(s + 1)(t + 1)(1 + st)(1 + s%t?)
A[s2t + t2s — 2st + s+ t £ (s — 1)(¢t — 1)Vv/2st]

(2)

is an integer ([5]).

3. Generalized hexagons.

In this section, we prove theorem 1.1.
We use the notation above and put u = /st and w = s + t. Rewriting
condition (1) we have that

w (1 + w+u?)(1 L u+u?)
2w — u) (3)

must be an integer for both choices of signs.

Suppose that GG acts transitively on the v points of a thick generalized
hexagon T' of order (s,t) and G is a one of the simple groups listed in the
ATLAS (2], see also tables 2 and 3 below. Since v = (1 + s)(1 + st + s%t?), the
latter expression divides |G|. Let p be a prime dividing 1 + st + s?t>. Then
1 + st + s%t? = 0 (mod p), hence s3t* = 1 (mod p). If st = 1 (mod p), then
clearly 1 + st 4+ s?t> = 3 (mod p) and so p = 3. In the other case, 1 must have
three distinct third roots in GF(p), so p—1 is divisible by 3 or in other words,
p =1 (mod 3). Note that for any integer n, 1 + n + n? is never divisible by
9. Put a(@G), or simply a, for the largest integer divisible by 3, but not by 9,
all of whose other prime divisors are congruent to 1 (mod 3) and such that
a(@G) divides |G|. We now distinguish between “small” groups and “larger”
ones, the larger ones being E7(2), M and Eg(2).
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3.1. Small Groups.

Given G, it turns out that a(G) only depends on its “socle” S except for
S = 52(8) in which case we consider a(AutS2(8)). Obviously, un upper bound
U for u is given by the fourth root of a(G). We can then look at table 1; it
contains all values for (1 + st + s%t?) for given u, 2 < u < 136. We consider
the largest number U* < U such that 1+ (U*)? + (U*)* divides |G|. This is
clearly a new upper bound for u. Hence st < (U*)? and since s < ¢3, this

1mplies
5 < 4f(st)® < \(U*)2

v < (YU + DA+ U +(U*))

and we denote the latter by A(G). If a(G) > 3 (that means, if U > 1), then
we list the values for a(G), U, U* and h(G) (if U* > 2) in table 2, in which we
also include the number P(G) defined as the smallest permutation degree of
S. The value for P(G) follows from [6] for 2E¢(2) and Ee(2); from [7] for the
sporadic groups and from the ATLAS [2] for the other groups. The “ATLAS-
groups” with a(@) < 3 are As, Ag, Ly(11), Ly(17), L,(16), L2(23), M11, Us(2),
M12, 54(4) and U5(2)

In a lot of cases, we have h(G) < P(G) which is a contradiction. If
U* = 2, then s = t = 2 and by [8], T’ is the unique classical generalized
hexagon H(2) arising from the classical group Us(3) = G2(2)'. Only one
simple group is a proper subgroup of Us(3), namely L3(2). But this group
does not act transitively on the 63 points of H(2) because 63 does not divide
|L3(2)| = 168. Of course if S = U;(3), then G acts transitively on exactly
two generalized hexagons, namely H(2) and its dual. The only remaining
sporadic group is Suz. The largest possible value for s or t is 8 (when u=4;
in general the largest value for s or t is \/’F, see above). Now Suz contains
an element 6 of order 11. Since 11 =2 (mod 3) and 11 > s+ 1,t+ 1, 6 fixes
at least one point z, all lines through z, all points on all lines through z,
etc. So 6 fixes everything, a contradiction. In the sequel, we shall refer to this
argument by the expression: a group element of order 11 cannot livein T'. We
consider the other groups in turn. Note that u > 2 (by the argument above),
so (s,t) # (2,2). A similar argument kills (s,t) = (2,8) and (s,t) = (8,2).
Indeed, the generalized hexagons with these orders are unique by [1] and the
related simple group is 3D4(2). Its proper simple subgroups are L3(2), L,(8)
and U3(3) ([2]). None of these groups has a divisible by 13, which shows our
assertion.

L,(13) |Here u < 4 and so (s,t) = (3,3) or (s,%) = (4,4). In the latter

case, v = 1365 and this does not divide |Aut(L2(13)| = 2184. In the former

So
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| ‘u,Jl—i—‘u,z—i—‘u,3 ” u Il—{—‘u?—{—‘u,4

[ v [1+u?+u?

[w [1to "

92

2 [3.7 36 | 13.31.43.97 70 | 3.1657.4831 104 | 3.67.163.3571
3 (713 37 | 3.7.31.43.67 71 | 3.1657.5113 105 | 67.163.11131
4 |3.713 38 | 3.7.67.1483 72 | 7.751.5113 106 | 3.19.199.11131
5 |3.7.31 39 | 7.223.1483 73 | 3.7.751.1801 107 | 3.7.13.19.127.199
6 | 31.43 40 | 3.7.223.547 74 | 3.7.13.61.1801 108 | 7.13.61.127.193
7 13.19.43 41 | 3.547.1723 75 | 7.13.61.5701 109 | 3.7.61.193.571
8 |3.19.73 42 ] 13.139.1723 76 |3.1951.5701 110 | 3.7.571.12211
9 |7.13.73 43 | 3.13.139.631 77 | 3.1951.6007 111 | 12211.12433
10 | 3.7.13.37 44 | 3.7.283.631 78 | 6007.6163 112 | 3.4219.12433
11 | 3.7.19.37 451 7.19.109.283 79 | 3.7%.43.6163 113 | 3.13.991.4219
12 | 7.19.157 46 | 3.7.19.103.109 || 80 | 3.72.43.6481 114 | 7.13.991.1873
13 | 3.61.157 47 | 3.7.37.61.103 81 | 7.13.73.6481 115 | 3.7.1873.4447
14 | 3.61.211 48 { 13.37.61.181 82 | 3.7.13.73.2269 116 | 3.72.277.4447
15 | 211.241 49 | 3.13.19.43.181 || 83 | 3.19.367.2269 117 | 72.277.13807
16 | 3.7.13.241 50 | 3.19.43.2551 84 |19.37.193.367 118 | 3.31.151.13807
17 | 3.7.13.307 51 | 7.379.2551 85 | 3.37.193.2437 119 | 3.31.151.14281
18 | 73.307 52 | 3.7.379.919 86 | 3.7.1069.2437 120 { 13.1117.14281
19 | 3.7%.127 53 ) 3.7.409.919 87 |7.13.19.31.1069 | 121 | 3.7.13.19.37.1117
20 | 3.127.421 54 | 7.409.2971 88 | 3.7.13.19.31.373 || 122 | 3.7.19.37.43.349
21 { 421.463 55 | 3.13.79.2971 89 |3.7.373.8011 123 | 7.43.349.2179
22 | 3.132.463 56 | 3.13.31.79.103 || 90 | 8011.8191 124 | 3.7.2179.5167
23 | 3.7.13%.79 57 | 31.103.3307 91 | 3.2791.8191 125 | 3.19.829.5167
24 | 7.79.601 58 | 3.7.163.3307 92 | 3.43.199.2791 126 | 13.19.829.1231
25 | 3.7.31.601 59 [ 3.7.163.3541 93 | 7.43.199.1249 127 | 3.13.1231.5419
26 | 3.7.19.31.37 || 60 | 7.523.3541 94 |3.7.13.229.1249 || 128 | 3.7%.337.5419
27 | 19.37.757 61 | 3.7.13.97.523 95 |3.7.13.229.1303 || 129 | 72.31.337.541
28 | 3.271.757 62 | 3.13.97.3907 96 | 7.67.139.1303 130 | 3.7.31.541.811
29 | 3.13.67.271 | 63 | 37.109.3907 97 | 3.67.139.3169 131 | 3.7.811.17293
30 | 72.13.19.67 |[ 64 | 3.19.37.73.109 |[ 98 | 3.31.313.3169 132 | 97.181.17293
31 3.72,19.331 | 65 | 3.7.19.73.613 99 | 31.313.9901 133 | 3.13.97.181.457
32 |3.7.151.331 || 66 | 7.613.4423 100 | 3.7.13.37.9901 134 | 3.13.79.229.457
33 | 7.151,1123 |} 67 | 3.7%.31.4423 101 | 3.7.13.37.10303 || 135 | 7.43.61.79.229
34 |3.397.1123 || 68 | 3.72.13.192.31 | 102 | 7.19.79.10303 136 | 3.7.43.61.6211
35 | 3.13.97.397 || 69 | 13.19%.4831 103 [ 3.7.19.79.3571 137 | 3.7.37.73.6211
Table 1.
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LS [ « JUITTAOIPEOT S 1 a U [U- ] AG) | P(G) ]
Li(2) 3.7 2 ]2 63 7 HS 3.7 2 2 63 100
L3(8) 3.7 2] 2 63 9 Js 3.19 2 1 6156
Lp(13) | 3.713 | 4 | 4 | 2457 | 14 Us(11) 3.37 3 11 1332

Ar 3.7 2| 2| 63 7 o (2) 3.7 2 2 63 120
La(19) | 319 | 2] 1 20 03(2) 3.7 2 2 63 119
Ly(3) 313 [ 2|1 13 || 3D4(2) 3.72.13 6 | 4 | 2457 819
Us(3) 3.7 2121 63 28 || Ly(11) 3.7.19 4 | 2 63 133
La(25) | 313 [ 2] 1 26 A2 3.7 2 |2 63 12
La(27) | 3713 | 4 | 4 [2457 | 28 Ma, 3.7 2 2 63 24
L2(29) 3.7 2| 2| 63 30 Ga(4) 3.7.13 4 | 4 | 2457 416
La(31) | 331 [ 3] 1 32 MecL 3.7 2 |2 63 275

Ay 3.7 2| 2| 63 8 Ay 3.7.13 4 | 4 | 2457 13
Ly(4) 3.7 2| 2| 63 21 He 3.7? 3 | 2 63 2058
Sz(8) | 3713 | 4 | 4 [ 2457 | 65 07(3) 3.7.13 4 | 4 | 2457 351
L2(32) [ 331 |3 | 1 33 Ss(2) 3.7.13 4 | 4 | 2457 364
Us(4) 313 [ 2| 1 65 Ga(5) 3.7.31 5 5 | 7929 3906
Us(5) 3.7 2| 2| 63 50 Us(2) 3.7 2 2 63 672

Jy 3719 [ 4 | 2 63 266 R(27) | 3.7.13.19.37 | 20 | 11 | 54.10* | 2.10*

A 3.7 212 | 63 9 Ss(2) 3.7 2 | 2 63 120
Ls(5) 331 |3 |1 31 Ru 3.7 2 | 2 63 4060

M;, 3.7 2| 2 | 63 22 Suz 3.713 4 | 4 | 2457 1782

Ja 3.7 2| 2| 63 | 100 O'N 3.7%.19.31 | 27 | 5 | 7929 | 122760
Se(2) 3.7 2| 2| 63 28 Cos 3.7 2 | 2 63 276

Ao 3.7 2| 21} 63 10 o} 3) 3.713 4 | 4 | 2457 1080
Ly(7) {3.7%19 {11 2 | 63 57 04(3) 3.7.13 4 | 4 | 2457 1066
Us(3) 3.7 2| 2| 63 | m2 offo(z) 3.7.31 5 | 5 [ 7929 496
Gy(3) | 3713 | 4 | 4 | 2457 | 351 | O;,(2) 3.7 2 | 2 63 495
54(5) 313 [ 2 | 1 156 Con 3.7 2 | 2 63 2300
Us(8) {3719 | 4| 2 | 63 | 513 Fizy 3.7.13 4 | 4 | 2457 3510
Us(7) |3.7°43 | 14| 2 | 63 | 344 HN 3.7.19 4 | 2 63 1140000
L4(3) 313 [ 3|1 40 Fi(2) 3.7%.13 6 | 4 | 2457 | 69615
Lg(2) | 3731 | 5 | 5 | 7929 31 Ly 3.7.31.3767 | 136 | 5 | 7929 | 8835156

Mas 3.7 2| 2| 63 23 Th |[3.7213.1931| 32 | 5 | 7929 >10°
Ly(8) (37273 (10| 2 [ 63 73 Fiay 3.7.13 4 | 4 | 2457 31671
2Fa(2)' | 313 |2 {1 1600 Co 3.72.13 6 | 4 | 2357 98280

An 3.7 2| 2| 63 11 A 3.731.37.43 | 31 | 6 | 19995 | > 10%
52(32) 31 2] 0 1025 [} 2Es(2) | 3.72.13.19 13 | 4 2457 | 3968055
Ly(9) | 3713 | 4 [ 4 |2457 | &1 Es(2) | 3.7°.13.31.73 | 74 | 9 [ 186004 [ 139503
Us(9) 373 [ 3] 1 730 Fiy, 3,7%.13 10 | 4 | 2457 | 306936

B 3,7213.19.31 ) 32 | 5 | 7929 | >10!°
Table 2.
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case, the stabilizer G, of a point = contains an element § of order 3. In G,
there are exactly 91 Sylow 3-subgroups. Hence § must fix exactly 4 points of
T. These 4 points form a set of imprimitivity. Since there are 4 lines through
z, 6 must fix one of these lines, say [. If y is another fixed point for 8, then 4
also fixes the point on [ nearest to y. Consequently, 8 fixes [ pointwise. The 91
lines thus obtained form a partition of the point set and G acts transitively
on the set £ of such lines. Hence G acts primitively on that set and since the
stabilizer G; of [ normalizes 6, G is isomorphic to Dy, or Dyy (see [2]). So we
can identify the 91 lines in £ with the 91 pairs of points of the projective line
over GF(13).

Suppose first G = Ly(13). Then |G| = 3, so no involution can fix a
point in I'. Every involution fixes exactly 7 lines of £ (that is the number
of pairs it stabilizes on the projective line PG(1,13)). These seven lines are
mutually opposite (on maximal distance) since otherwise a point is fixed.
Identify an arbitrary line [ € £ with the pair {(0),(o0)}. All pairs {(r),(s)},
r,s € GF(13)!, with r/s a square in GF(13) can be stabilized under a certain
involution also stabilizing {(0),(o0)}, and the others cannot. There are 30
such pairs and by the preceding argument they are all opposite I. Left are
five orbits of length 12 under the stabilizer of {(0),(o0)}. Two of these orbits
contain all pairs of the form {(0), (r)} and {(o0),(r)} with r a square, resp. a
non-square, denote them by Og, resp. Og. The other three orbits contain pairs
{(s),(2s)}, resp. {(s),(55)}, {(s),(6s)} and we denote them by O;, 1 = 2,5,6
respectively. Since there are 36 elements of £ at distance 4 from [, at least
one of the sets O;, ¢ = 2,5,6, must have all its elements at distance 4 from
l. Suppose {(r),(s)} € O2 U Os is a line at distance 4 from [. Let y, , (resp.
I, ,) be the unique point (resp. line) of I' at distance 1 (resp. 2) from ! and at
distance 3 (resp. 2) from {(r), (s)}. Applying 6, we see that also {(3r),(3s)}
is at distance 4 from [. Define y3, 3, and l;,,s, as above. Obviously yr, = Yar,3,-
One can verify that {(r),(s)} and {(3r),(3s)} lie at distance 6 from each
other, so I, # I3, ,,. Hence § acts transitively on the lines distinct from [
through each point of {. This implies that G acts transitively on the pairs of
lines (m,m’), with m € £ and m’' & L. So G acts transitively on the lines
not in £, but this action is imprimitive with sets of imprimitivity of order
3. The stabilizer of such a set is A4 (see [2]). So A4 acts regularly on the 12
points of the three lines of a set of imprimitivity. This implies the existence of
an involution swapping any two points on a line not in £, or in other words,
swapping two lines of £ at distance 4. But the pairs {(0), (c0)} and {(r),(s)}
are swapped by an element of PGL,(13) \ L,(13). Hence the lines of £ at
distance 4 from ! are precisely all elements of Os, Op and Oy and @ fixes
all lines meeting . Therefore, the sets L = {{(o0),(r)}||r € {0,1,3,9}} and
L' = {{(o0),(m)}|r € {0,2,5,6}} consist of 4 lines meeting a common line.
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But the automorphism determined by adding 12 to each coordinate maps
{(c0),(1)} to I and {(o0),(3)} to {(0),(2)}, hence L should be mapped to
L’, but it is not, as one can verify immediately.

Next suppose G = PGL,(13). Then |G.| = 6 and so there is an involu-
tion 8 fixing z. Also, 8 fixes exactly 7 lines of £, among them the unique line {
of L incident with . If all other fixed lines of £ have distance 4 from [, then §
fixes at least two points on each of these lines and so 8 fixes points at distance
5 from ! and from other fixed lines, hence 8 fixes an ordinary hexagon. In the
other case, this is trivially true. Hence 8 fixes a subhexagon of order (1,3) or
(3,1) (since 6 fixes at least 7 lines from £, any other possible configuration of
fixed structure contains at most 5 elements of £). So theta fixes either 26 or
52 points. Since there are no involutions in G, other than 6, this implies that
6 has exactly 14, resp. 7 conjugates in G, which means that # is normalized
by a group of order at least 2.3.13, contradicting the information on L,(13)
given in the ATLAS [2].

As in the previous case, (s,t) = (3,3) or (s,t) = (4,4). Also
(s,t) = (4,4) is eliminated the same way. If (s,t) = (3, 3), then the stabilizer
of a point z has order 3%.[G : L,(27)] and it follows from the ATLAS [2] that
it normalizes an elementary abelian subgroup of order 33. There are 28 such
groups (two by two disjoint) and therefore any element of such group fixes
exactly 13 points of I". As before, these 13 points form a set Q of imprimitivity
containing the points of some line ! through z {considering an element of order
3 in G.). Any other point of (! defines a point nearest to ! which must also
be in . Hence we can assume that there is another line I’ through z all of
whose points are in 2. By transitivity, every point of  is incident with two
lines all of whose points are in §2. This is impossible in view of |} = 13.

52(8)| Again (s,t) = (3,3) or (s,t) = (4,4). In the former case, a

group element of order 5 cannot live in I'. In the latter case, we deduce as
above that every of the 65 Sylow 2-groups fixes 21 points, which form a set
of imprimitivity. As before, such a set cannot exist.

G,(3)| Again (s,t) = (3,3) or (s,t) = (4,4). In the latter case, v does
not divide |G|. In the former case, I’ must be the classical generalized hexagon
since (G essentially has only one transitive representation on 364 points.

In view of a = 3.7.31, only (s,t) = 5 is possible. Consider a
point z. The stabilizer G, contains a group H of order 2°. A line through z
is in an orbit of length 1,2 or 4 under H. If it is in an orbit of length 4, then
some other line through z is in an orbit of length 2. Hence a group H* of
order 28 fixes a line ! through z. Since s = ¢ = 5, this group must fix another
line through z and another point on [, etc. So at least an ordinary hexagon is
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fixed by H*. A point y on one of the sides has an orbit of size at most 4, the
stabilizer of y fixes also another point on the same side and there are only 2
points left on that side. Hence a group of order at least 2° fixes a hexagon
and all points on one of its sides. Similarly, a group of order at least 22 fixes a
hexagon, all points on one of its sides and all lines through one of its vertices.
But then all elements of I' are fixed (since this generates a subhexagon of
order (5,5)), a contradiction.

Here (s,t) = (3,3) or (s,t) = (4,4). In the former case, a group
element of order 5 cannot live in G. In the latter case, the stabilizer G, of
a point z contains a group of order 3°. As above, this group fixes a hexagon
and a subgroup of order 32 fixes everything, a contradiction.

3D4(2)| We have to rule out (s,t) = (3,3) and (s,t) = (4,4). In both

cases, the stabilizer G, of a point = contains an element of order 7 and such
an element cannot live in T'.

G2(4) | Order (3, 3) is ruled out by the presence of an element of order

5 in G. The representation on 1365 points is essentially unique, hence the
“classical” generalized hexagon of order (4,4) and its dual arise.

Every order is ruled out by the presence of an element of order
13, which cannot live in T'.
07(3) | If (s,t) = (3,3), then a group element of order 5 cannot live in
G. I (s,t) = (4,4), then, as in the case of L3(9) < G, the presence of a group
of order 32 in the stabilizer of a point leads to a contradiction.

Se(3) | See 0+(3) < G; both groups have the same order.

G2(5) | Here, only (s,t) = (5,5) is possible, it occurs and it is unique
up to duality (by the information in the ATLAS [2}).

Here,u = 11,10,4,3,2. But u < 4 is impossible in view of P(G).
If u=11,then s =t = 11 and a group element of order 13 cannot livein I'. If
u = 10, then s = 4,5,10,20 or 25. But s = 4,10, 20 or 25 implies v does not
divide |G| (s = 4 and s = 25 are also ruled out by the fact that (3) is not an
integer in these cases). Hence (s,t) = (5,20). The order of the stabilizer of a
point is 22.3%.19, with b = 8 or 9 depending on G = R(27) or G = R(27) : 3.
So G, properly contains the normalizer of a Sylow 19-subgroup, which is a
maximal subgroup, a contradiction.

O} (3) |In view of P(S) = 1080, the only possibility here is s = t = 4.
The order of the stabilizer of a point of I' is divisible by 2'2.3'1.5. The presence

of a Sylow 3-subgroup of G of order at least 3! leads to a contradiction as
in the case § = L3(9) or § = 04(3).
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O3 (3) | Whatever the order of T, a group element of order 41 cannot

live in G.

01(2) | Whatever the order of T, a group element of order 17 cannot
livein T'.

E6(2)|In view of table 1, u = 9 or u < 5. In the latter case, v would

be smaller than P(G); in the former case, a group element of order 31 cannot
livein I' (because s,t < 27).

This completes the case of small groups.

3.2. Larger Groups.
In this case, we can still compute U as above, but it is too large to use table 1
to find U*. But we can use U to compute A(G) as in the previous paragraph.
For G = M, we obtain

o(G) = 3.75.13%.19.31
KG) ~ 107.10%
P(G) ~ 9271.10V

This rules out G = M. In general, there is obviously a minimal value U, for
u such that the derived number h(G) is larger then P(G). So U, < u < U.
We now develop a method to reduce the bound U until it is below U, without
having to calculate all values for 1 + u? + u*. Consider a divisor d of a(G),
preferably larger than or just a little bit smaller than U. The number of u
such that d divides 1 + u? + u* is limited and usually none of these values
for u (except maybe very small ones which are in conflict with U, anyway)
give a 1 4+ u? 4+ u* dividing a(G). Hence we can recalculate U starting from
a(G)/p, where P is the smallest prime dividing d. We refer to this procedure
as “reduction modulo d”. We usually take for d a prime or a prime power, so
that we can do this reduction a few times and end up with no value of u left.
Let us illustrate this in the case of G = E7(2). We have here

o(G) = 3.7°.13.19.31.43.73.127
P(G) = 277347807

U = 1331

U, = 35

It is easy to calculate by hand that only u = 1250 gives rise to 1 + u? + u*
divisible by 73.127. Indeed, every u giving 1 + u? + u* divisible by 73 is
congruent to 8,9,64 or 65 modulo 73, similarly, every suitable » must also
be congruent to 19,20, 107 or 108 modulo 127. Only 1250 satisfies these
conditions and is smaller 1331. But in the same way, we see that 43 does
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not divide 1 +u? +u* in that case, so d = 43.73.127 gives us no solutions and
the new upper bound is U’ = 519. We now see that 1250 > 519, so the new
upper bound becomes 455. Putting d = 127, the possible values for u are 19,
107, 146, 234, 273, 361 and 400. This gives us:

uwl|l+u?+ut ul|l+u?+ut

19 1 3.73.127 20 | 3.127.421
107 | 3.7.13.19.127.199 || 108 | 7.13.61.127.193
146 | 3.132.127.7057 147 | 132.127.21757
234 | 7.127.433.7789 23513.7.19.127.139.433
273 119.31.127.74257 274 1 3.19.31.127.25117
361 [ 3.73.13%2.127.769 | 362 | 3.7%.127.331.397

Hence only u = 19 would do, but it is smaller than U,. The new upper bound
now becomes 396. A reduction modulo 43.73 (with no possible u smaller than
396) gives the new upper bound 154. Reduction modulo 73 yields u = 19 or
20 (too small) and the new upper bound 95. Table 1 now shows that u < 35,
ruling out G = E,(2).

The group Eg(2) is much harder to handle because it is much larger.
We have:

a(G) = 3.7%.132.19.312.43.73.127.151.241.331
P(G) ~ 293.10

U = 571575

U, = 1500

Using reductions again, we have ruled out Eg(2) by computer using CAYLEY.

We will apply this method of reduction again in the next section. We
will not have to use the computer again.

This completes the proof of theorem 1.1.

4. Generalized octagons.

In this section, we prove theorem 1.2.
We use the notation of subsection 2.2. Put u = \/—’-Z,I and w = s +t. We
rewrite the rational number (2) of section 2.2 as

u?(1+w + 2u?)(1 + 2u?)(1 £ 2u + 2u?)
2(w + 2u) '

(4)

This must be an integer for both choices of signs.

Suppose that G acts transitively on the v points of a thick generalized
octagon I of order (s,t) and G is again one of the simple groups listed in the
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[u[1+4u* Jull+4u* Jull+dwt ]
12

2 (513 5.53.313 22 | 52.37.1013
3 |5%.13 135.73.313 2315.13.17.1013
4 15241 14 1 5.73.421 24 15.13.17.1201
5 [41.61 15113.37.421 25 1 1201.1301

6 [5.17.61 16 (5.13.37.109 || 26 { 5.281.1301
7 15.17.113 17 15.109.613 || 27 | 5.17.89.281
8 15.29.113 18 [ 5.137.613 || 28 | 53.13.17.89
9 |5.29.181 19 | 5.137.761 29 | 5%.13.1741
10 {13.17.181 |20 | 29%.761 30 1741.1861
11{5.13.17.53 || 21 | 52.292.37 31| 5.397.1861

Table 3.

ATLAS [2]. Obviously v = (1+s)(1+st)(1+s%?) divides |G|. Let p be a prime
dividing 1 + s2t%. Then 1+ s*t2 =0 (mod p), hence s*t? = ~1 (mod p) and
—1 is a square in GF(p) which impliesp=2or p=1 (mod 4). Since st is
even, p # 2. So we put a(@G), or simply a, for the largest integer all of whose
other prime divisors are congruent to 1 (mod 4) and such that a(G) divides
|G|. We now again distinguish between “small” groups and “larger” ones, this
time, the larger ones being only M and Eg(2).

4.1. Small Groups.

As before, a(G) only depends on the socle S of G except in the cases § =
52(32) and S = L,(32) in which case we consider the respective automor-
phism groups. We can copy the arguments of subsection 3.1 almost word by
word. An upper bound U for u is given by the fourth root of a(G)/2. We
can then look at table 4; it contains all values for (1 + s%t?) for given u,
2 < u < 31. We consider the largest number U* < U such that 1 + 4(U*)*
divides |G|. This is clearly a new upper bound for u. By inspection of the
orders of the small ATLAS-groups, it turns out that only for 24 among them
U* > 1. We list them is table 5 together with their order, the order d of their
outer automorphism group, a, U and U*.

Note that, if u = 3, then 1+ st = 19, hence |G| must be divisible by 19.
For the groups in table 5 with U* > 3, this is only true for Th, 2Eg(2), B and
E7(2). In this case however, {s,t} = {3,6} and no group element of prime 31
nor 17 can live in I' contradicting the fact that one of these primes divides
the order of the four groups mentioned. So we may assume u # 3. There
is only one case where U* > 3 and that is if § = 52(32). Here u = 4 and
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5 139 [dT]a vlu|
L,(25) | 2%.3.5%.13 22 | 5%.13 33
Us(4) |26.3.5%.13 22 | 52.13 313
Sy(5) |2¢.32.5%.13 2 |5%13 6| 3
L(3) |27.3%.5.13 22 |5.13 2|2
2F,(2) | 2'1.3%.52.13 2 |5%.13 313
S2(32) | 21°.52.31.41 5 |5%41 5| 4
L3(9) [27.3%.5.7.13 22 5.13 2|2
G,(4) | 212.3%.5%.7.13 2 |5%.13 313
Ays | 2°.3%.52.7.11.13 2 |52.13 3|3
0+(3) |2°.3°.5.7.13 2 [5.13 2|2
Se(3) |2°.3°.5.7.13 2 |5.13 2|2
Ru ] 2'%.3%.5%.7.13.29 1 |53.13.29 10| 3
Suz |213.37.5%.7.11.13 2 |5%13 313
0F(3) | 212.31252.7.13 23.3 | 5%.13 313
05 (3) | 21°.3125.7.13.41 22 |5.13.41 5| 2
Fi;; | 217.39.5%.7.11.13 2 |5%13 3|3
Fy(2) | 224.36.52.72.13.17 2 | 52.13.17 6| 3
Th |2'%.31°5%72.13.19.31 1 |5%13 4|3
Fi,s | 218.313.52.7.11.13.17.23 1 |5%13.17 6|3
Co, |2%.3°.5%.72.11.13.23 1 ]5%13 63
2Eg(2) | 2%€.3%.52.72.11.13.17.19 2.3 | 52.13.17 613
Eq(2) | 2%6.3%.5%.7°.13.17.31.73 2 [5%.13.17.73 | 17| 3
Fi,, |2%.3'€52.73.11.13.17.23.29 2 |5%.13.17.291 141 3
B | 24.31356.72.11.13.17.19.23.31.47 1 |5%.13.17 30| 3
E,(2) | 2%.311.52.72.11.13.17.19.31.43.73.127 | 1 |5%.13.17.73 17| 3

Table 4.
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{s,t} = {4, 8}, so a group element of order 31 cannot live in I'. Hence, for the
rest of the proof, we have u = 2 and hence (s,t) = (2,4) or (s,t) = (4,2). So
if |G| contains a prime p distinct from 13 and greater then 6, then we obtain
a contradiction since a group element of order p could not live in I'. Only
for the first five groups of table 5 we have that p = 7 does not divide |G|.
Moreover, the orders of the first two groups are not divisible by 3% = 1 + st,
a contradiction. We consider the other groups in turn.

Note that necessarily s = 4 because otherwise 3* = (1+s)(1+st)
and this does not divide |G|. The order of the stabilizer G, of a point z of T
is divisible by 5, so consider an element 8 of order 5 in G.. It has to fix all
three lines through z and all points other than z on these lines, etc. So 8 is
the identity, a contradiction.

Here, s = 2 since 52 does not divide |G|. The stabilizer G, of a
point & contains a Sylow 3-subgroup H of order 33. The latter fixes at least
two lines through z, all points on these lines, at least one other line through
those points, etc. This is enough to conclude that H fixes a suboctagon I of
order (2,1) and H has all orbits of length 27 on the points and lines not in
I (otherwise a group element fixes the “geometric closure” of IV and a fixed
element not in I, which is T' itself). But the number of points outside I in
T"is 1710 and this is not divisible by 27.

2Fy(2) | Every transitive action on 1755 or 2925 points is primitive by

the information in the ATLAS [2], hence T is the usual generalized octagon or
its dual.

This completes the case of small groups.

4.2. Larger Groups.
We first deal with G = M. We have

a(G) = 5°.13%17.29.41
P(G) ~ 927.107

U = 2158

U, = 313

The lower bound U, is achieved as in subsection 3.2. We do a reduction modulo
5% (cp. subsection 3.2). Suppose 5°|1 + s2¢2. This means that s?#% = 4u* = —1
(mod 5°) or u* = 781 (mod 5°). This has only four solutions not larger
than 2158, namely 1028, 1029, 2096 and 2097. But for none of these values
(1 + st)(1 + s*t?) is a divisor of |[M|. Hence

1+ s%t%]5%.13%.17.29.41 ~ 2775.107,
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giving us the new upper bound U’ =298 < 375 = U*.
Similarly, we deal with G = Ey(2). Here

a(G) = 5°.132.17%.41.73.241
P(G) ~ 293.10'

U = 2290

U, = 170

Reduction modulo 5° gives the new bound 1531. Reduction modulo 5* (pos-
sibilities for u are 221, 222, 403, 404, 846, 847, 1471, 1472) gives the new
bound 1024. Reduction modulo 73.241 (u = 570) gives the new bound 350.
Reduction modulo 241 (u = 88, 89, 152, 153, 329, 330) gives the new bound
259. Reduction modulo 172 (u = 125, 126, 163, 164) gives finally the upper
bound 128, contradicting U, = 170.

This completes the proof of theorem 1.2.
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Block-transitive t-designs, II: large ¢
P. J. Cameron C. E. Praeger

Abstract

We study block-transitive ¢-(v, k, A) designs for large t. We show that
there are no nontrivial block-transitive 8-designs, and no nontrivial
flag-transitive 7-designs. There are no known nontrivial block-transitive
6-designs; we show that the automorphism group of such a design, or
of a flag-transitive 5-design with more than 24 points, must be ei-
ther an affine group over GF(2) or a 2-dimensional projective linear
group. We begin the investigation of these two cases, and construct a
flag-transitive 5-(256, 24, A) design for a suitable value of A.

1. Introduction
A t-(v,k, )) design is a pair D = (X, B), where X is a set of v points, B a set
of k-element subsets of X called blocks, such that any ¢ points are contained
in exactly X blocks, for some ¢t < k and A > 0. Such a design (X, B) is said to
be trivial if B consists of all the k-element subsets of X. A flagin a design D
is an incident point-block pair. A subgroup G of the automorphism group of
D is said to be block-transitive if G is transitive on B ; D is block-transitive if
Aut(D) is. Point- and flag-transitivity are defined similarly. For information
about ¢-designs, see Hughes and Piper [11].

In this paper we consider nontrivial block-transitive t-designs with ¢
large. We use a result of Ray-Chaudhuri and Wilson [16] together with the
finite simple group classification to show in Section 2 that t < 7.

Theorem 1.1 Let D = (X, B) be a nontrivial t-design admitting a group
G of automorphisms. If G is block-transitive then t < 7, while if G is flag-
transitive then t < 6.

Thus there are no nontrivial block-transitive 8-designs, and no non-
trivial flag-transitive 7-designs. We conjecture that more is true (see also
Kourovka Notebook, [14], Problem 11.45).

Conjecture 1.2 There are no nontrivial block-transitive 6-designs.

In Section 2 we identify (Proposition 2.3) a short list of groups as
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the only possible candidates for automorphism groups of block-transitive 7-
designs. We examine several of the groups on this list and conclude (Proposi-
tion 2.4) that such a design would have as automorphism group either an affine
group over GF(2) or a 2-dimensional projective linear group. In Section 3 we
extend Alltop’s investigation [1] of block-transitive 5-designs admitting affine
groups. In particular we give a construction of a flag-transitive 5-(256,24, )
design with automorphism group AGL(8,2) and with A = 221.32.52.7.31. Fi-
nally in Section 4 we discuss flag-transitive 5-designs admitting PSL(2, q).
Note that for positive integers s < t, any block-transitive t-design D =
(X,B°) is also a block-transitive s-design. Also the complementary design
D¢ = (X,(X\B)%) is a block-transitive t-design (if k+t < v, see [11], Exercise
1.39), but if D is flag-transitive then D¢ is not necessarily flag-transitive.

2. Automorphism groups of block-transitive t-designs,
t large

Let D = (X, B) be a t-(v,k,)) design, where t > 2, and suppose that a
subgroup G of Aut(D) is block-transitive on D. The starting point for our
investigation is the following theorem which can be deduced from a result of
Ray-Chaudhuri and Wilson [16].

Theorem 2.1 (Ray-Chaudhuri and Wilson.) Let D = (X, B) be a t-(v, k, )
design with t > 2, and let G be a subgroup of Aut(D).
(a) If G is block-transitive on D then G is [t/2]-homogeneous on points.
(b) If G is flag-transitive on D then G is [(t + 1)/2]-homogeneous on
points.

Proof. (a) The theorem of Ray-Chaudhuri and Wilson [16] shows that the
incidence matrix of [t/2]-sets of points against blocks has full rank. Now the
argument of Block’s Lemma gives the result of case (a).

(b) The derived design of D with point set X\{z} and block set {8\{z} |
B € B,z € B} is a block-transitive (t — 1)-design. By part (a), G is transitive
on X and, if t > 3, then G, is [(t — 1)/2]-homogeneous on X\{z}. Hence G
is [(t + 1)/2]-homogeneous on X. a

One consequence of the finite simple group classification is that the only
6-homogeneous permutation groups on X are the alternating and symmetric
groups on X (see [5]), and as Alt(X) and Sym(X) are k-homogeneous for
all k < v — 2, only trivial designs admit these groups. Thus an immediate
corollary to Theorem 2.1 is that there are no nontrivial block-transitive 12-
designs and no nontrivial flag-transitive 11-designs. By being more careful we
can improve this observation considerably. The classification of all finite 3-
homogeneous subgroups G of Sym(X) also follows from the finite simple group
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classification (see Livingstone and Wagner [13], Cameron [5] and Liebeck [12]);
such a group G satisfies one of the following.

List 2.2 (a) G is Alt(X) or Sym(X),

(b) G is M, with |X| = v where v € {11,12,22,23,24}, or AutM,, with
| X| =22,

(c) G = My, withv =12,

(d) PSL(2,q) < G < PT'L(2,q) with | X| = ¢+ 1,q a prime power, g > 5.

(e) G = AGL(d,2) with | X| =24 > 8.

We note that not every group satisfying (d) is 3-homogeneous on X.
First we prove a straightforward consequence of Theorem 2.1 using this clas-
sification.

Proposition 2.3 Let D = (X, B) be a nontrivial t-(v, k, ) design, and let
G be a group of automorphisms of D.
(a) Suppose that G is block-transitive and t > 6. Then one of the following
holds.
(i) t is 10 or 11, and G is My, or My with v = 12 or 24 respectively.
(i1) t is 8 or 9, and G is one of the Mathieu groups in (b) of List 2.2
(with v # 22), or G = PTL(2,32) with v = 33.
(i12) t is 6 or 7, and G is one of the groups in List 2.2.
(b) Suppose that G is flag-transitive and t > 5. Then one of the following
holds.
(i) t is 9 or 10, and G is M2 or M4 with v = 12 or 24 respectively.
(1) t is 7 or 8, and G is one of the Mathieu groups in (b) of List 2.2
(with v # 22), or
(i1i) t is 5 or 6, and G is one of the groups in List 2.2.

Proof. Since D is nontrivial, G is not Alt(X) or Sym(X) and k > ¢t + 1.
By Theorem 2.1 if G is block-transitive then G is [t/2]-transitive on X. If
t > 10 then ¢ is 10 or 11 and G is 5-homogeneous whence by Livingstone
and Wagner [13] G is 5-transitive and so G is My with v = |X| = 24, or
G = My; withv =12. If t is 8 or 9 then G is 4-homogeneous and it follows,
sincev > k > t+1 > 9, that either G is one of the Mathieu groups in (b)
(v # 22) of List 2.2 or G is PT'L(2,32) with v = 33. If ¢ is 6 or 7 then G is
3-homogeneous and so is one of the groups in List 2.2. If G is flag-transitive
then, by Theorem 2.1, G is [(t + 1)/2]-transitive on X, and the result follows
as above. (Note that when ¢t = 7, G is not PSL(2,8) or PTL(2,8) since these
groups would be k-homogeneous.) a
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Now we shall examine the possible block-transitive actions of the Math-
leu groups on nontrivial t-designs for large t.

Proposition 2.4 (a) Let v = 22,23, or 24. If the Mathieu group M, or
AutM, is block-transitive on a t-(v, k, \) design D = (X, B) for some t, k, },
thent <v—19 < 5.

(b) Let v = 11 or 12. If the Mathieu group M, is block-transitive on a
t-(v, k, A) design D = (X, B) for some t,k, ), thent <v — 7 < 5.

(c) If G = My, is block-transitive on a t-(12,k, ) design D = (X, B)
for some t,k, ), then t < 5.

Proof. Let G be the Mathieu group M, or AutM,, and assume that G
is block-transitive on a t-(v, k, \) design D = (X, B). By replacing D by the
complementary design if necessary, we may assume that k < v/2. The number
b = | B| of blocks satisfies bk(k —1)...(k—t+1)=v(v—1)...(v —t + 1)},
and b divides |G| since G is block-transitive. If v is 22, 23 or 24 and t > v —18,
then 19 would divide b, and hence 19 would divide |G| which is not the case.
Similarly,if vis 11 or 12 and t > v—6, then we deduce that 7 divides |G| which
again is not the case. Finally if G = M;;,v = 12 and G is block-transitive,
then as above we may assume that k& < 6. Then if t > 6 we deduce that 7
divides |G| which is not the case. Hence ¢ < 5. o
It is now a simple matter to complete the proof of Theorem 1.1. If D =
(X, B) is a nontrivial t-(v, k, \) design admitting G acting block-transitively
with ¢ > 8, or flag-transitively with ¢ > 7, then by Propositions 2.3 and 2.4,
v = 33 and G = PT'L(2,32). As in the proof of Proposition 2.4, G is block-
transitive on D and on its complementary design, both of which are t-designs
-and one of which has block size at most 16; we then deduce that 29 divides
the number of blocks which leads to a contradiction since 29 does not divide
|G|. Thus Theorem 1.1 is proved. a
Moreover it follows from Propositions 2.3 and 2.4 that a group G of
automorphisms which is block-transitive on a nontrivial 6-design must satisfy
(d) or (e) of List 2.2.

3. Designs in Affine Spaces

In this section we discuss t-designs D = (X, B) admitting G = AGL(d,2) <
Sym(X) acting block-transitively, where v = |X| = 2¢ > 8, ¢ > 4. Such
designs have been studied by W.O. Alltop [1], see also [11]. We summarise
some of his work below.

The group G is transitive on 3-element subsets and has two orbits on
4-element subsets of X = AG(d,2), a d-dimensional affine space over GF(2).
The orbits of G on 4-element subsets are the collection Sy of all affine planes,
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and the collection S) of all 4-element subsets which generate a 3-dimensional
affine space. (An s-element subset which generates an (s — 1)-dimensional
affine space is called an independent s-element subset.) Also G has two orbits
on 5-element subsets of X, namely the set Ty of all 5-element subsets which
contain an affine plane, and the set 7 of independent 5-element subsets.
Moreover,

51| _ oa Ty _ 278
150] =2°—4, and 7] =
Suppose now that D = (X, B) is a nontrivial t-(2%, k, A) design admit-
ting G, with t = 4 or t = 5. Then B = 8¢ = {8%g € G} for some k-element
subset B of X where t < k < 29 — t, and by replacing D by its complemen-
tary design if necessary we may assume that k < 29!, Conversely if 8 is
any k-element subset of X (where k < 2¢71) and if o;,7; are the number of
4-element subsets, 5-element subsets of # which belong to S, T; respectively,
for 1 = 0,1, then Alltop [1] showed that (X, %) is a 4-design if and only if

gy = 00(2‘1 —_— 4),

a 5-design if and only if
"= 7'0(2‘1 — 8)/5,

and, surprisingly, (X, %) is a 5-design if and only if it is a 4-design, and the
two equations above are each equivalent to

o= (})1*- ) 1)

One simple consequence of the fact that 2¢ — 3 must divide (i) (with
k < 2%71) is that 2¢ — 3 must be divisible by at least two distinct primes,
and the smallest value of d for which this is true is d = 8. The divisibility
condition for d = 8 implies that k € {23,24,25,46,47,69}, and Alltop [1]
constructed an example of a 5-(2%,24, ) design admitting AGL(8,2) by this
method, that is by finding a 24-element subset of AG(8,2) which contained
exactly 42 affine planes.

It is possible to determine precisely the values of k and d for which a
divisibility condition of the type above holds. In general there will be several
infinite families of possibilities. A discussion of this in a similar context is
given in Gamble [10] using the Chinese Remainder Theorem. However it is
not at all clear how to construct k-element subsets containing a given number
(f) /(2% — 3) of affine planes in general. Alltop [1] gives a heuristic argument
to suggest that such sets may exist often.

We extend Alltop’s work by constructing a 5-(28,24, \) design on which
AGL(8,2) is flag-transitive, not merely block-transitive. First we observe that
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flag-transitivity imposes extra restrictions on the parameters of a design; of
course the complementary design of a flag-transitive design need not be flag-
transitive so we can no longer assume that k is at most v/2.

Lemma 3.1 Suppose that D = (X, B) is a nontrivial 5(2%, k,)) design

admitting a flag-transitive group of automorphisms G = AGL(d,2), where

X = AG(d,2), and d > 3, for some k, ).

(a) Then eack block contains og = (f)/(Zd —3) affine planes (whence 2¢ — 3
divides (;‘)), and k divides |G|. In particular d > 8.

(b) For d = 8, k is 24 or 210.

Proof. Part (a) follows from our discussion above of Alltop’s results to-
gether with the observations that the block stabilizer of a block 8 is transitive
on 3. Now suppose d = 8. The condition that 2% — 3 divides (';) implies that
k or 22 — k lies in {23,24,25,46,47,69}, and the condition that k divides
|AGL(8,2)| further restricts k to be one of 24, 25, 210. Suppose that k = 25.
Since the order of a Sylow 5-subgroup of G is 25 and since the stabilizer Gg
of a block § is transitive on 8, Gs must contain a Sylow 5-subgroup P of G.
Now P has 9 orbits of length 25 in X and Ng(P) is transitive on them. Thus
each of these 9 orbits of P of length 25 is a block of D. Each of these orbits
is of the form 8 = {v + w|v € O,,w € Oz} where O, and O; are P-orbits
of length 5, 0; and O, span disjoint 4-dimensional vector subspaces, and any
four points of O; are independent, for = 1,2. The affine planes contained in
B are the sets {v +w,v' +w,v+w',v' + w'} where v,v' € Oy,w,w' € O,, and
B contains (;)2 = 100 such planes. However, by part (a), if 8 is to be a block

of a 5-design then B must contain oo = (2:>/(28 —3) = 50 affine planes. Thus
there is no such design with k& = 25.

In a flag-transitive 5-design admitting AGL(8,2) each block must con-
tain 42 affine planes if k = 24, and 321,220 planes if £k = 210. We shall give
a construction of such a design with block size 24. We doubt whether an
example exists with block size 210. There were two “candidates” for such a
5-(28,210, )) design, neither of which worked. These were the subgroups Sio
and GL(4,2) x GL(2,2) of GL(8,2), each having orbit lengths 1, 45, 210 on
V. (The first is contained in Sp(8,2). The second acts on V via its identifica-
tion with V(4,2) ® V(2,2), its orbits being the sets of tensors of ranks 0, 1,
2. In each case, it is not difficult to count the affine planes contained in the
orbit of length 210.)

Question. Is there a flag-transitive 5-(256,210,)) design with auto-
morphism group AGL(8,2), for some A7

As preparation for our construction of a flag-transitive 5-(2%,24, ) de-
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sign with automorphism group AGL(8,2), we present the design criterion of
Alltop [1], Lemma 3.1(a), in a different form.

In any 5-(2¢,k,)) design D = (X, B) with X = AG(d,2) there will
be many blocks containing the zero vector 0. For a k-element subset 8 of X
containing 0,8 = {z1,. ..,z = 0}, define the following subset of V = Z%:

Co(B) = {(f(z1),-- ., f(ze))If € X}

where X™* is the dual of X (here X is viewed as a d-dimensional vector space
over GF(2)). Then Co(B) is a subspace of V of dimension dy equal to the
dimension of the linear span of 8 in X. Let C(8) be the subspace of all
even weight vectors in Co(8)*, so Co(B)* = C(B8) @ ((0,...,0,1)). Then dim
C(B) = k —do — 1. A justification for this seemingly artificial construction is
provided by the following lemma, in which, for a subset S of 8, we denote by
xs the vector (vq,...,vx) of V with v; = 1 if and only if z; € S. This lemma
provides a coding theory setting for deciding whether a given k-element subset
of X generates a 5-design. After proving it we give a partial converse which
may be used for construction of such designs.

Lemma 3.2 (a) Let S be a subset of 3. If xs € C(B) then ¥, sz =0 in X.
Conversely if ¥zcsz = 0 in X then xs € C(B) If | S| Is even, xs\(0} € C(B)
if |S| is odd and 0 € S, and xsujo} € C(B) if |S| is odd and 0 ¢ S. Further
if xs € C(B) and S is non-empty then |S| > 4, that is C(B) has minimum
weight at least 4.

(b) The affine planes in 8 are the 4-element subsets S of B for which
xs € C(B) (that is the supports of weight 4 vectors of C(8)). Moreover
(X, B°) is a 5-design if and only if C(B) contains exactly (i)/(Zd — 3) weight
4 vectors.

(c) If (X, B°) is a 5-design and G is flag-transitive then G induces a
transitive group of automorphisms of the code C(8).

Proof. (a) If xs € C(B) C Co(B)*, then for every f € X* we have

0= f(z)xs(z) =Y f(z) = F(}_ =),

zep z€S z€S

whence 3,52 = 0 in X. Suppose then that }° .5z = 0. The computation
above shows that xs € Co(B)*. Thus, if |S| is even, then xs € C(8). Suppose
that |S]is odd. If 0 € § then ¥,¢5\ {0y & = 0 and |S\{0}| is even, and we have
just shown that xs\(oy € C(B). Similarly, if 0 ¢ S then ¥,csu(03% = 0 and
|S U {0}| is even, and again xsu{o} € C(B)- If xs € C(B), S nonempty, then
as C(B) consists of even weight vectors, |S| > 2 is even. If S = {z,y}, then
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as we have just shown, z +y = 0, that is, ¢ = y, which is a contradiction.
Hence |S| > 4.

(b) The affine planes in B are the 4-element subsets S of § with zero
sum, Y csx = 0. By part (a) these are precisely the supports of weight 4
vectors in C(B). Finally, by Lemma 3.1(a), (X,8%) is a 5-design if and only
if there are (ﬁ)/(Zd — 3) weight 4 vectors in C(B).

(c) Suppose (X,3%) is a 5-design and G is flag-transitive on it. Since
C(B) = Co(B)L N1*, where 1 is the all-1 vector, we have C(8)* = (Co(B), 1),
and it suffices to show that this space is G-invariant. Clearly G fixes 1. Sup-
pose that the element g : ¢ — zA + ¢ of G induces the permutation 7 of
{z1,...,zx}. Then, for any f € X*, we have

(f(:l:lﬂ'), . .,f(:z:mr)) = (f(mlA + C)! (RS f(a:kA + C))
= (f'(1), -2 f(=e)) + f(S)1,

where f' € X* is defined by f'(z) = f(zA). This vector belongs to (Co(8), 1),
as required. a

Now we prove a partial converse of Lemma 3.2. Lemma 3.2 proved that
if (X, 8%) is a 5-design then C(B) is a code consisting of even weight vectors
with minimum weight 4, dimension k — do + 1, and containing (';) /(2¢ - 3)
weight 4 vectors, where do is the dimension of the span of 8 in X. We prove
the converse of this in the case where dy = d.

Lemma 3.3 Let V = Z% let T be the standard basis of V, and let W be
the codimension 1 subspace of V consisting of all even weight vectors in V.
Suppose that C is a subspace of W of dimension k — d — 1 having minimum
weight 4 and containing exactly (i) /(24 —3) weight 4 vectors. Then, denoting
by D the image (D + C)/C in V/C of a subset D of V, the set V\W has
the structure of an affine space AG(d,2) and T is a k-element subset of V\W
containing (2)/(2‘1 — 3) affine planes, whence D = (V\W,T46H42)) js a
5-(2¢,k,\) design admitting AGL(d,2) as a block-transitive automorphism
group for some ). Further, the automorphism group Aut C of C induces a
group of affine transformations of V\W which fixes T setwise. In particular if
Aut C is transitive on components of vectors in V then D is a flag-transitive
5-design.

Proof. Now V is a (d + 1)-dimensional vector space with W a codimension
1 subspace. Hence V\W is an affine space AG(d,2). Moreover T is a subset
of VAW of cardinality k, since any identification of elements of T' modulo C
would correspond to vectors of weight 2 in C. A 4-element subset of T is an
affine plane in V\W if and only if it has zero sum modulo C, that is, if and
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only if it corresponds to a 4-element subset of T' which is the support of a
vector in C. Hence T contains (i) /(2% — 3) affine planes whence, by Lemma
3.1, D is a block-transitive 5-design admitting G = AGL(d,2).

The automorphism group A of the code C is a group of permutations
of the components of vectors in V' which leaves C invariant. Thus A acts
as a group of linear transformations of V leaving W,C and T invariant. It
follows that A induces a group of affine transformations of V\W which leaves
T invariant. In particular if A is transitive on components then A is transitive
on T and hence D is flag-transitive. (m]

We show that there is an example of a flag-transitive 5-design (X, 8%)
when d = 8 and k = 24 by constructing a binary linear code of length 24,
dimension 15, minimum weight 4, containing exactly 42 vectors of weight 4,
and admitting a transitive automorphism group.

Construction 3.4 Let Cy be the extended binary Golay code of length 24,
dimension 12 and minimum weight 8 (see [7], Chapter 11). It is easily checked
that any coset of Co in V = Z2* which contains a weight 4 vector contains
exactly six weight 4 vectors (forming a sextet). Let S be an octad, that is the
support of some weight 8 vector in Cp; and let H be an extended Hamming
code (see [7]) of length 8, dimension 4 and minimum weight 4 based on S, and
embedded in V (by replacing each vector h € H by the vector in V which is
zero off S and agrees with h on S). We claim that C = H+ C, has dimension
15, minimum weight 4 and contains exactly 42 vectors of weight 4. Further
H can be chosen in such a way that C has a transitive automorphism group.

Proof. Since xs € H N G, it follows that dim(H + Co)/Co = 3, whence
C = H + Cj has dimension 15. Also C has minimum weight 4 and, since
each nontrivial coset of (xs) in H consists of two weight 4 vectors, each
nontrivial coset of Cy in C contains at least 1, and hence exactly 6, weight
4 vectors. Thus C contains exactly 42 weight 4 vectors. The automorphism
group A = AutCy of Cy is M4 and the setwise stabilizer Ag of S in My, is
2*.Ag (see [8]). Further, the stabilizer Ay of H in Ag is 2*.AGL(3,2). There
are two conjugacy classes of subgroups AGL(3,2) in As (corresponding to
the stabilizer of a point or a hyperplane in PG(3,2)) and hence essentially
two different ways to choose the Hamming code H. If we choose a copy of H
corresponding to the stabilizer of a hyperplane, then Ay stabilizes a partition
P of the 24 components into 3 octads and an affine space (or Hamming code)
on each of these octads. Moreover (see [8]) Ay is contained in the subgroup
Ac = 25 : (PSL(3,2) x S3) permuting the 3 octads (and their Hamming
codes) transitively; it is the stabilizer of an octad in Ag. The subgroup Ac¢
preserves C and is transitive on the 24 components. a
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Thus putting together this construction and the result of Lemma 3.3
we have as an immediate corollary:

Corollary 3.5 There is a flag-transitive 5-(256,24, \) design with automor-
phism group AGL(8,2).

Since G = AGL(8,2) is a maximal subgroup of GAzse by [15], AGL(8,2)
is the full automorphism group of the design. Moreover, since there are
|AGL(8,2) : (2°:(PSL(3,2) x S3))| blocks in the design we constructed, it
follows that the parameter A = 22*,32.5%2.7.31.

Finally we record the necessary and sufficient conditions for (X,5%)
to be a block-transitive 6-design admitting G = AGL(d,2) in terms of the
6-clement subsets of 8.

Proposition 3.6 Let G = AGL(d,2) and X = AG(d,2) ford > 5.

(a) The group G has four orbits on the set ()g) of 6-element subsets
of X. Two of these are the sets Uy and U; of all 6-element subsets v which
generate an afline space of dimension 3 and § respectively. The other two
orbits are the sets U, and U, of all 6-element subsets which generate a 4-
dimensional affine space and which contain no affine plane or a unique affine
plane respectively. Further,

Uo] = 24(2¢ —1)(2¢ —2)(2¢ — ¢4)/2* 3,
|Uh| = |Uo|(2* —8)/3.5,

V2| = |Uol(2® —8),

|Us| = |Upl(2? —8)(2¢ — 16)/2'*.3.7.31.

(b) For a k-element subset B8 of X, (X, 3€) is a block-transitive 6-design
admitting G if and only if the numbers u; of 6-element subsets of 8 lying in
U;, for 1 =0,1,2,3, satisfy

uy = 15u; = uo(2? — 8),us = uo(2¢ — 8)(2¢ — 16)/2'1.3.7.31.

Equivalently (X, 8°) is a block-transitive 6-design admitting G if and
only if (X,B€) is a 4-design (that is the number oo of affine planes in 8 is

(5) /2 -3)),
up = 15 ('g) /(24 = 3)(2¢ —5) (2)
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and

uy = uo(2¢ — 8)/15. (3)

Proof. (a) Since G is transitive on independent ordered 6-tuples of points
of X, Us is an orbit. Similarly since G is transitive on the set of 3-dimensional
affine subspaces of X, and AGL(3,2) is transitive on 6-element subsets of
AG(3,2), Uy is an orbit. So consider the set of 6-element subsets v which gen-
erate a 4-dimensional affine space. Consider vy as a subset of AG(4,2) = Zj.
Since v generates AG(4,2) and since AGL(4,2) is transitive on indepen-
dent ordered 5-tuples from AG(4,2) we may assume that -y contains 0,e; =
(1,0,0,0),e; = (0,1,0,0),e3 = (0,0,1,0) and e4 = (0,0,0,1). If v contains
no affine planes then vy N (e;, e;,e1) = {0, e;, €5, €1} for distinct ¢, 7,1, whence
v = {0, e1,ez,€3,€4,(1,1,1,1)}. Hence U; is an orbit. Suppose then that 7y
contains an affine plane. Without loss of generality we may assume that
contains § = {0,e1,€5, € + €2}, and as the stabilizer in AGL(4,2) of § is
transitive on independent pairs from AG(4,2)\6,U, is also an orbit. It is
straightforward to compute the sizes of these orbits.

(b) By a result in the folklore of this subject (see [11] or [6], Proposition
1.3) (X, 8%) will be a 6-design if and only if the ratio of the numbers u; of
6-element subsets of B lying in U; to the cardinality of U; is independent of
1, that is if and only if uo/|Us| = u1/|U1| = u2/|Uz| = ua/|Us| which yields

uy = uo(2? — 8)/15,uy = uo(2% — 8) and us = uo(2¢ — 8)(2¢ — 16)/2'1.3.7.31.

We obtain some equivalent necessary and sufficient conditions as fol-
lows. By Lemma 3.1, (X,8°) is a 4-design if and only if the number gy of
affine planes in 8 is g = (';) /(2% — 3). Counting the number of pairs (v, )
where v C v C B, v is an affine plane, and |y| = 6 we find that

k-4
o{ = 3ug + ug,

since each y € U, contains a unique affine plane and each 6-element subset
of AG(3,2) contains 3 affine planes. It follows that, if (X, 8%) is a 4-design,
then up = up(2? — 8) if and only if uo = 0o (*;*) /(2¢ — 5), that is,

"o = 15(2) /(24 = 3)(2 — 5). (a)

Further, by [1], (X,8°) is a 4-design if and only if the number 7, of
independent 5-element subsets of 8 is
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71 = ao(k — 4)(2¢ — 8)/5 = (Z)(k — a)(2% — 8)/5(2 — 3).

Counting the number of pairs (v, ) where » C v C 8, v is an indepen-
dent 5-element subset of -y, and |y| = 6, we find that

T1(k — 5) = 6uy + duy + 6us (5)

since all 5-element subsets of 6-sets 4 in Uy or U are independent, and for
v € U; an independent 5-element subset of v contains 3 of the 4 points of the
unique affine plane in . Thus again, if (X,(%) is a 4-design, and equation
(2) holds then (using equation (5))

u +us = ao(k ; 4) (2¢ — 8)(2* — 15)/15(2¢ — 5)

(:)(2" - 8)(2¢ — 15)/(2* — 3)(2¢ - 5). (6)

(We note that equations (2), (6), uz = uo(2* — 8), and go = (i) /(2% - 3)
imply that wo +u1 +uz +u3 = (2), so there is no extra information there.) It
follows that (X,8¢) is a 6-design if and only if it is a 4-design, equation (2)
holds, and uy = uo(2¢ — 8)/15 = (%) (24 — 8)/(2¢ — 3)(2¢ - 5). O

4. Designs in projective lines

The only groups from List 2.2 not yet discussed in detail are the projec-
tive groups G satisfying PSL(2,q) < G < Pr'L(2,q) with G acting 3-
homogeneously on the g + 1 points of the projective line X = PG(l,q) =
GF(q)U {oo}. Designs with point set X admitting such groups G have been
investigated by Assmus and Mattson [3] and Alltop [2], and more recently by
Laue and Schmalz (see [17]). Alltop constructed an infinite family of block-
transitive 4-(¢+1,¢/2, )) designs admitting G = PGL(2, q) in the case where
g = 2%*%1 > 32, where ) = (2% — 3)(22*"! — 1), namely (X, 3%) where 8 is
a 2a-dimensional subspace of X\{oco} considered as a (2a + 1)-dimensional
vector space over GF(2).

We have not made much progress in this case in showing that no block-
transitive 6-designs or flag-transitive 5-designs admitting G exist. We note
that the cross-ratio gives a complete invariant for the set of orbits of PGL(2, q)
on ordered 4-tuples of points from X, that is (a, b,c,d) and (a’,¥,c’,d') lie in
the same orbit under PGL(2, q) if and only if

(a—c)(b—4d) _ (a' = ) — d’)'
(a=d)b-9) ~ (7= &)F-¢)
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The cross-ratio takes all values in GF(q) except 0 and 1. In general, the
cross-ratio of four given points takes six different values depending on the
order of the points. Such a 4-set lies in an orbit of size (g + 1)g(q — 1)/4.
However, harmonic quadruples (cross-ratio —1, 2 or %), or equianharmonic
quadruples (cross-ratio —w or —w?, where w is a primitive cube root of unity),
form orbits of size (g+1)g(g—1)/8 or (¢ +1)g(q —1)/12 respectively. Special
care is needed in characteristic 2 (no harmonic quadruples) and 3 (harmonic
quadruples form an orbit of length (¢ + 1)g(g — 1)/24; no equianharmonic
quadruples). For example, suppose that ¢ = —1 (mod 6) and 3 is a k-subset
of X = PG(1,q), G = PGL(2,q). Then (X,B°) is a 4-design if and only if
B contains 3(:‘) /(g — 2) harmonic quadruples and 6(:‘)/ (¢ — 2) quadruples
from each “ordinary” orbit. The case ¢ = 11, 8 = {0,1,3,4,5,9} gives a
well-known example. However, the conditions for a 5-design or 6-design will
be much more complicated.
In the other direction, we have the following result.

Proposition 4.1 Let D = (X,(%) be a block-transitive 6-(q+1,k, A) design
admitting a group G where PSL(2,q) < G < PTL(2,q) with ¢ = p* > p,p
a prime, and G is 3-homogeneous on X = PG(1,q), for some k and A. Then
the following all hold, where ao = |G|/(g + 1)g(g — 1) (so that ; < ao < a):

(a) The number b of blocks divides (q+1)g(g—1)ao and b > (g+1)g(q—
1)/6.

(b) g — 2 divides k(k — 1)(k — 2)(k — 3)ao.

(c) (g — 2)(g — 3) divides k(k — 1)(k — 2)(k — 3)(k — 4)ao.

(d) (g —2)(g — 3)(g — 4) divides k(k — 1)(k — 2)(k — 3)(k — 4)(k — 5)ao.

Proof. The inequality for b comes from the theorem of Ray-Chaudhuri and
Wilson [16], the divisibility from the block-transitivity. The remaining parts
of the Proposition come from the familiar divisibility conditions for ¢t-designs
(see [11]). o
These divisibility conditions appear to have few solutions. The first two
are (g, k) = (59,22) and (67, 16).
Similar results hold for flag-transitive 5-designs:

Proposition 4.2 Let D = (X,3%) be a flag-transitive 5-(q + 1,k, ) design
admitting a group G where PSL(2,q) < G < PTL(2,q) with ¢ = p* > p,p
a prime, and G is 3-homogeneous on X = PG(1,q), for some k and ). Then
the following all hold, where ao = |G|/(qg + 1)q(g — 1) (so that 3 < ao < a):
(a) The number r of blocks containing a point divides g(q¢ — 1)ao and
r > q(g—1)/2.
(b) k divides q(q® — 1)ao.
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(c) g — 2 divides (k — 1)(k — 2)(k — 3)ao.
(d) (g — 2)(g ~ 3) divides (k — 1)(k — 2)(k — 3)(k — 4)ao.

Proof. The set of blocks containing a point z € X (with the point z re-
moved) form the blocks of a 4-(q,k — 1,)") design D, for some X', and hence
by the result of Ray-Chaudhuri and Wilson [16], the number of these blocks
r > q(g— 1)/2. This is the Petrenjuk bound, and by [4], [9], the only nontriv-
ial 4-designs attaining this bound are the 4-(23,7,1) design with automor-
phism group M3 and its complement. Suppose that ¢ = 23 and r = 23.11.
Then k must be 8 (rather than 17), D must be the 5-(24,8,1) design with
AutD = My, and G = AutD N PGL(2,23) = PSL(2,23). However, see
[8], |G| = bk, while an involution in G fixes a flag, and hence G is not flag-
transitive. Hence r > g(q — 1)/2. Moreover since G is flag-transitive, vr = bk
divides |G| which divides (g4 1)g(g —1)ao, where b = |3%| and v = g+ 1. This
proves (a) and (b). Moreover, since D is both a 4-design and a 5-design, (:) di-

vides b(';), and (’;) divides b(';); using the fact that bk divides (¢+1)g(g—1)ao
we obtain (c) and (d). mi
Again, the conditions of the Proposition have comparatively few solu-
tions. The first few for which q is prime are (g, k) = (17, 8), (23, 8), (23, 16),
(47, 12), and (233, 24). (Note that, if g is prime, then @ = 1 and the design
is sharply flag-transitive.)
From the last two results, we can deduce the following:

Corollary 4.3 No 6-design admits a group G satisfying PSL(2,9) < G <
PT'L(2,q) acting flag-transitively.

Proof. Such a design satisfies both b > (g + 1)g(g — 1)/6 and b < (¢ +
1)g(q — 1)a/k, where g = p°, p prime. So k < 6a < 6log, q. The divisibility
conditions imply that k > c.q'/2
by these conditions are easily checked by hand. a

As we noted in our previous paper [6], if (X,8°) is a flag-transitive 5-
design, then so also is (X, BFT%(29)), so we assume first in our search for such
designs, that G = PT'L(2,q), with ¢ = p® as in Proposition 4.2. Let = € 3,
let F be the flag (z,8), and let H = PGL(2,q).

. The finite number of possibilities allowed

Lemma 4.4 Let G, H,D be as above, and suppose that Hp # 1. Then one
of the following holds.

(a) Hg < Dyg+1y, Hr = 23, and H has two orbits on flags. Moreover,
either Hg = Dy is transitive on (3, or Hg = Dy has two orbits of length k/2
in 8.

(b)Hg = 7.2, < Z2.Zq_1, k = p°, Hp is transitiveon 3,Gg = Ng(Hp),
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and H has a/|Gs : Hg| = a/|HGp : H| orbits on blocks. Also Hr = Z,,u
divides ¢ — 1, and u < 2a/|Gg : Hp|.

Proof. Suppose that p divides |HF|, and let ¢ € Hr have order p. Then z
is the unique point of X fixed by g. Since Gg is transitive on @8 and Hg is
normal in Gg, each characteristic subgroup of Hg has equal length orbits in
B. It follows that Op(Hg) = 1, and hence either Hp is contained in Dj(g41)
with p = 2 or Hg is A4 or 54 with p = 3, or Hg = As withp =2 or 3, or
PSL(2,p*) < Hg < PGL(2,p*) for some divisor ao of a. In all cases all
subgroups of Hg of order p are conjugate in Hg, so each subgroup of Hg of
order p fixes a unique point of B. Also, since Hg is normal in G and Gg is
transitive on 3, each point of § is fixed by some subgroup of Hg of order p.
It follows that Hg is transitive on B, that is, H is flag-transitive. Hence vr
divides |H| = q(¢* ~ 1) = vq(g — 1). By Proposition 4.2(a), r > g(qg — 1)/2
and it follows that Hr = 1, which is a contradiction. It follows both that
p does not divide |Hp| and that H is not flag-transitive. Suppose next that
PSL(2,p™) is normal in Hg for some divisor aq of a. Since p does not divide
|Hr|, z does not lie in the orbit of Hg of length p*° + 1. It follows that Hr = 1
which contradicts our assumptions. Hence Hg is soluble.

Note that Hp < H, = Z3.Z,,, and as p does not divide |Hp|, Hr <
Zgq-1, say Hr = (h) ~ Z,, and h fixes = and one other point, say @' of X.
Since Hg is normal in Gg and Gg is transitive on 8, each point of § is fixed
by some subgroup Z, of Hg, conjugate to Hr by an element of Gg. Note
that 8 = 2. Further, Hr fixes § points of zf#, where § = [Ny, (Hr) : Hr|,
and, as h fixes just two points of X, 8 is 1 or 2. Suppose that Hp is normal
in Hg. Then |zf#| = |Hg : Hr| = § = 1 or 2. If Hr is normal in G4 then
k = |B| = |z%)| < 2, which is a contradiction. Hence H is not normal in Gg.
Then » = 2 and the normal closure of Hr in Gg has order 4, and is contained
in Hpg; hence Hg = Z; X Z,, and as k > 5,0 contains z and z’ and k = 6.
But then Ny(Hg) = A4 or S fixes B setwise (as B is the set of points of X
fixed by elements of Hg of order 2) which is a contradiction. Hence HF is not
normal in Hg.

Suppose next that Hg < Dygt1). Then u = |Hr| = 2 and Hp ~ Dy,
for some w > 2,w dividing q £ 1. Suppose first that § = 2. Then w is
even, z' € zHs C B,w = |zP|, and there are two conjugacy classes in Hp
of non-central involutions, each of size w/2. Since Gg is transitive on 8,8
consists of all the fixed points of just one or of both of these classes, that
is either k = w (B = zM6) or k = 2w respectively. In the former case,
since H is not flag-transitive, H has 2 orbits on blocks and Hg = D,x. Then
Gp = Ng(Hg),Hs = Ny(Hg), H is block-transitive and Hg = D, has two
orbits of length w = k/2 in 8. Now suppose that § = 1. Then w is odd,
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w = |zH8|,2' ¢ zfs, and Ny(Hg) = Da, interchanges z¥¢ and (z')fe. It
follows that z' ¢ B. Since Ng(Hp) fixes zH6 U (z')Ho setwise (the set of points
fixed by involutions in Hg) it follows that Gg has index 2 in Ng(Hg) and
B = zfs. Also, there are two equal sized conjugacy classes in H of subgroups
Dsy,w odd, and hence, since H is not flag-transitive, H has two equal sized
orbits on blocks (and hence on flags).

If Hp < Z2.Z41 = Hp then, since HF is not normal in Hg, O,(Hp) # 1
and z' ¢ B. Since p does not divide |HF|, Op(Hg) is semiregular on 8 and
each subgroup Z, of Hs fixes a unique point of 8. It follows that k is equal
to the number of subgroups of Hs of order u, that is &k = |Hs : Hp|. So
B = z*s. Moreover f3 is fixed setwise by Ng(Hp), so Gg = Ng(Hp) and H
has a/|Gg : Hg| = a/|HGgs : H| orbits on blocks. By Proposition 4.2(a),
u < 2a/|Gg : Hg|.

The remaining possibilities for Hg are Hg = A4, S4 and As. Here u is
2,3,4 or 5, and in all cases if two cyclic subgroups of Hg are conjugate in Gg
then they are already conjugate in Hg. Also in all cases NHE(HF) = Dy, so
5§ =2,z € B, and B is the set of fixed points of all the Hg conjugates of Hp.
Thus 8 = z# and B is fixed setwise by Ng(Hg), whence Gg = Ng(Hp) and
Hg = Ng(Hg). It follows that H is flag-transitive, which is a contradiction.O
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Generalized Fischer spaces

H. Cuypers

Abstract
A generalized Fischer space is a partial linear space in which any two
intersecting lines generate a subspace isomorphic to an affine plane or
the dual of an affine plane. We give a classification of all finite and infi-
nite generalized Fischer spaces under some nondegeneracy conditions.

1. Introduction

Let IT = (P,L) be a partial linear space, that is a set of points P together
with a set L of subsets of P of cardinality at least 2 called lines, such that
each pair of points is in at most one line. A subset X of P is called a subspace
of II if it has the property that any line meeting X in at least two points
is contained in X. A subspace X together with the lines contained in it is a
partial linear space. Subspaces are usualy identified with these partial linear
spaces. As the intersection of any collection of subspaces is again a subspace,
we can define for each subset X of P the subspace generated by X to be the
smallest subspace containing X. This subspace will be denoted by (X). A
plane is a subspace generated by two intersecting lines.

In [3], [6] partial linear spaces are considered in which all planes are
either isomorphic to an affine plane or the dual of an affine plane. Such spaces
are called generalized Fischer spaces. Since the affine plane of order 2 is not
generated by two intersecting lines, all lines of a generalized Fischer space
contained in some plane have at least 3 points. A generalized Fischer space
all of whose lines contain 3 points is called a Fischer space. Fischer spaces are
closely related to 3-transpositions. See [1], [3], [4], [7] and Section 3.

Let II be a generalized Fischer space and suppose z and y are points
of TI. We say that z and y are collinear , notation z L y, if there is a line
containing them. If ¢ and y are distinct collinear points, then the unique line
containing them will be denoted by zy. By z1 we denote the set of all points
y with z L y or y = z. The space II is called L-reduced if * = y* implies
x =y. It is called f-reducedif z* \ {z} = y* \ {y} implies z = y and reduced
if it is both L-and [- reduced. We call II irreducible if it is reduced and both
the graph (P, L) and its complement are connected.

In [6] a complete classification of all finite irreducible generalized Fischer
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spaces is given. Recently some new results on geometries and groups related to
generalized Fischer spaces are obtained, without any finiteness assumptions.
See [2], [4], [5], [9] and [10]. These results make it possible to classify all
irreducible generalized Fischer spaces, finite and infinite:

Theorem 1.1 Let I be an irreducible generalized Fischer space, then II is
isomorphic to one of the following:

1. the geometry of hyperbolic lines in a nondegenerate symplectic space;

2. the geometry of 2-sets in a set §);

3. the geometry of elliptic lines in a nondegenerate orthogonal GF(2)-
space;

4. the geometry of hyperbolic lines in a nondegenerate unitary GF(4)-
space;

5. the geometry of tangent lines in a nondegenerate orthogonal GF(3)-
space;

6. the geometry of tangent lines in a nondegenerate unitary GF(4)-space;

7. one of the Fischer spaces obtained from the sporadic Fischer groups
Fi22, F’I:23 and F’I:24.

In the next section we will give a brief description of the geometries
occurring in the above theorem; a proof of that result is given in Section 3.

2. Examples

We give a brief description of the geometries appearing in our main result
Theorem 1.1.

2.1 The geometry of hyperbolic lines in a symplectic space.
Let V be a vector space equipped with a symplectic form f. The 1l-spaces of
V' are the points and the sets of points contained in a 2-space on which the
form is nontrivial are the lines of our space.

2.2 The geometry of 2-sets in some set (2.

Let ) be a set, then the points of our space are the subsets of size 2 in 1. A
line is the triple of points contained in a subset of size 3 of (1.

2.3 The geometry of elliptic lines in a nondegenerate orthogonal GF(2)-
space.
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Let V be a vector space over GF(2) and suppose @ is a nondegenerate
quadratic form on Q. Points are the 1l-spaces of V on which @ is nontriv-
ial, lines are the sets of points in a 2-space on which @ induces an elliptic
form.

2.4 The geometry of tangent lines in a nondegenerate orthogonal GF(3)-
space.

Suppose V is a GF(3)-space and @ a nondegenerate quadratic form on V.
The points are the 1-spaces (v) of V with Q(v) = 1, the lines are the sets of
3 points in the 2-spaces of V on which @ has a unique 1-dimensional radical.

2.5 The geometry of hyperbolic lines in a nondegenerate unitary GF(4)-
space.

Suppose V is a vector space over GF(4), and h is a nondegenerate hermitian
form on V. The points are the 1-spaces of V on which h vanishes, a line is
the set of points in a 2-space on which h is nondegenerate.

2.6 The geometry of tangent lines in a nondegenerate unitary G F(4)-space.

Let V and h as above. Now we take as points the 1-spaces of V on which
h does not vanish, and as lines the sets of points contained in a 2-space on
which h has a 1-dimensional radical.

2.7 The Fischer spaces related to the sporadic Fischer groups F'i;, where
t = 22, 23, or 24.

The sporadic Fischer groups contain a unique conjugacy class D of 3-trans-
positions. Take the elements of D as points and the subsets of D of size 3
contained in a subgroup {d, ), where d and e are noncommuting elements in
D, as lines.

It is not hard to check that, under some mild conditions on the dimen-
sion, the spaces described above are indeed irreducible generalized Fischer
spaces.

3. Proof of the Theorem

In this section we give a proof of the main theorem of this paper.
Suppose II is a connected generalized Fischer space. It follows from [3]
that all lines in II have the same number of points. First we consider the case
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where all lines contain 3 points. As already observed in the introduction, there
is a correspondence between Fischer spaces and classes of 3-transpositions.
We explain this connection.

Let IT = (P, L) be a connected Fischer space, then to every point p of II
we can attach an involution ¢, in the automorphism group of II that fixes p,
interchanges the points on every line through p that are different from p and
fixes all the other points. Then the set {t, | p € P} is a set of 3-transpositions
in the subgroup of the automorphism group of Il generated by these invo-
lutions. Since II is connected, these involutions form a conjugacy class of
3-transpositions. The subgroup of Aut(II) generated by these involutions will
be denoted by G(II).

On the other hand, if D is a conjugacy class of 3-transpositions, then
let L be the set of all triples DN (d, e) where d, e are noncommuting elements
of D. Then (D, L) is a connected generalized Fischer space. Up to a center
the groups (D) and G(D, L) are isomorphic.

Proposition 3.1 Let Il be an irreducible Fischer space, then G(II) contains
no nontrivial normal solvable subgroup.

Proof. Thisis 2.2 of [4]. O

Proposition 3.2 Let Il be an irreducible Fischer space, then Il is one of the
spaces of the conclusion of Theorem 1.1.

Proof. By the above, II is one of the spaces obtained from a conjugacy
class of 3-transpositions generating a group with no nontrivial normal solvable
subgroup. Hence we can apply Theorem 1.1 of [4], and we find that II is one
of the spaces appearing in the conclusion of Theorem 1.1, or G(II) is one of
the two triality groups PQg(2) : Z;3 or PQ}(3) : T3. However, in these last
two cases the complement of the graph (P, 1) is not connected. |

This handles the case where all lines contain 3 points, and from now
on we can assume that all lines contain at least 4 points. So suppose that II
is an irreducible generalized Fischer space with all lines containing at least 4
points.

Proposition 3.3 Suppose II contains only dual affine planes. Then II is iso-
morphic to the geometry of hyperbolic lines in a nondegenerate symplectic

space.

Proof. Since all planes of II are dual affine, we can apply the results of [2],
see also [8]. Hence it follows that II is the geometry of hyperbolic lines in
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some symplectic space. Since Il is f-reduced this space is nondegenerate. O
It remains to consider the case where there are both affine and dual
affine planes in II. (If II contains only affine planes, it is not L-reduced.)
Thus assume that both types of planes occur in II. Then the main result
of [6] reads as follows.

Lemma 3.4 [6] Let m be an affine plane in I, and = a point not in 7. If z is
not collinear to some point in 7, then there is a line in 7 all of whose points
are not collinear with z.

This lemma has the following important consequence.

Proposition 3.5 [6] Let z be a point in II. Then the lines and affine planes
on z form a nondegenerate polar space.

The following lemma is concerned with dual affine planes.

Lemma 3.6 Let m be a dual affine plane and z a point not in w. Then z is
at least not collinear with all the points of some line of w or with all but one
of the points on some transversal coclique of .

Proof. Suppose z is collinear with some point y in the plane 7. If there is at
most one line on y in 7 completely contained in z* then z is noncollinear with
all or all but one of the points on a transversal coclique in 7. Thus assume
that there are at least two lines / and m of 7 on y in z!. Then (z,!) is an
affine plane and all lines on y in 7 are in z*, see [3]. Let z be a point on m
different from y. Then by the above lemma there is a line in {(z,l) consisting
of points not collinear to z. This line has to be parallel to the line through z
and y. Now suppose t is a point in the transversal coclique of m on y and let
n be a line on t in . Then n meets [ and m in points u and v respectively,
different from y. As the line through = and u meets every line parallel to zy,
it contains a point not collinear to v. Hence (z,n) is dual affine and t is the
unique point not in z1. Thus z is not collinear to all points of the transversal
coclique of 7 on y except for y. o

Lemma 3.7 If two dual affine planes m, and 7, meet in two noncollinear
points, they meet in at least all but two points of a transversal coclique.
Moreover, if m; contains a point that is not collinear with all points of a

transversal coclique of 7, then they meet in all points of a transversal coclique.

Proof. Suppose m and 7, are two dual affine planes meeting in two non-
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collinear points z and y. Choose points z; € 73,7 = 1,2, such that z L z; L y
and 2; L z,. By the above lemma it is possible to choose z; and z; in such
a way that both planes (2, z, z;) and {z,y, z2) are dual affine. Now let u be
the point on zz; not collinear with z, and w the point on z;2; not collinear
to y. Let v be the intersection point of uw with zz;. By the previous lemma
all but one of the lines in 7, through v contain a point not collinear to u and
thus generate together with u a dual affine plane. Let ! be such a line not on
y. Then ! meets yz; In a point ¢ say, and ¢t L w. The line tw meets yz; in some
point s. If s L u then [ and us meet in a point of m; N ;. Thus at least all
but one of the lines [ give rise to an intersection point of m; and ,, different
lines giving different points. This implies that 7, N7, contains at least all but
two points of the transversal coclique of m; on z,¢ = 1,2.

If there is a point in 7, that is not collinear with all points of a transver-
sal coclique of gy, then the proof of Lemma 3.5 and 3.6 of [2] applies. This
proves the lemma. O

Lemma 3.8 Lines contain at most 5 points.

Proof. Suppose lines contain at least 6 points. Let m be an affine plane
and z a point collinear with some but not all points of 7. Fix a line [ in
7 containing a unique point y not collinear with z. Let m be the line in 7
containing the points not collinear with z. Now let z be a point collinear with
all points on a line of w through y but different from {. This is possible since
the lines and affine planes on y form a nondegenerate polar space. Then z is
not collinear with a point on ! different from y and a point u on m different
from y. Thus z is collinear with at least all but one of the points of the
transversal coclique on z in the plane {(z,!). Let v be a point in that coclique
collinear with z. Then the plane {z,y,v) meets the transversal coclique in at
least 3 points, two of them not collinear with u. But 2z and u are also not
collinear, which implies that u is noncollinear with all points in the plane
{z,y,v) contradicting u L y. o

Proposition 3.9 The space Il is isomorphic to the geometry of tangent lines
in some nondegenerate unitary GF(4)-space.

Proof. The space II satisfies the conditions of Theorem 1.2 of [5]. (Notice
that the collinearity graph of II has diameter 2, cf. [3]) If there is a point z
in II such that the lines and affine planes on z form a polar space of rank at
least 3, then the proposition follows easily from Theorem 1.3 of [5] and the
fact that lines contain 4 or 5 points.

Thus assume that the polar space of lines and planes on a given point
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has rank 2. In view of the results of [3] we only have to show that II is finite,
and since the diameter of the collinearity graph of II is 2 it suffices to prove
that the generalized quadrangle of lines and planes on a point of II is finite.

Fix a point z and suppose the generalized quadrangle @, of lines and
affine planes on z is infinite. Since all lines in @), contain s 4+ 1 points with
s = 4 or 5, the number of lines through a point of the generalized quadrangle
Q. is constant and thus infinite.

We obtain a contradiction in a number of steps.

Let D be the set of lines on z in some fixed dual affine plane 7 on z.

Step 1. If a point of Q) is collinear with 2 points of D it is collinear with all
points in D,

Proof. See [3] o
Step 2. Let K be a line in Q. missing D, then K contains at least 2 points
not collinear with any point in D.

Proof. Every point in D is collinear with one point on K, every point on
K with 0,1 or all points of D. Hence there are at least |K| — |D| = 2 points
on K not collinear with any point of D. |

Let p be a point in @, collinear with all points of D.

Step 8. There is a dual affine plane 7' on z and a point 2’ in 11, which is not
collinear with precisely all the points of a transversal coclique in ', such that
the lines in ' on z and zz' are collinear with p in Q..
Proof. Since there are infinitely many lines on p not meeting D, there are
infinitely many pairwise noncollinear points in @, collinear with p that are
not collinear with any point of D. This implies that there is a point z’ in II
collinear with z such that zz' and p are collinear and that is not collinear
with all the points of a transversal coclique in m and we are done, or there
are two noncollinear points y and z in II both collinear with z that are not
collinear with some fixed point v on a line in 7 through z, but still zz and
zy being collinear in @, with p. Then take 2’ = v and 7' = (z,y, 2). O
Without loss we can now assume that there is a point y collinear with
z that is not collinear with all the points of a transversal coclique in .
Let 7' be the plane generated by y and two points of a transversal T of 7
contained in y*. Then by Lemma 3.7 the planes 7 and 7' meet in all points
of the transversal. But that means that the lines and dual affine planes on z
meeting 7' in a point respectively a transversal coclique or line but not in the
transversal of 7’ having a point not in z' form an affine plane. Denote this
plane by A.
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Step 4. Lines in @), contain 5 points.

Proof. Suppose lines in @, contain 6 points. Let K be a line through p in
Q. meeting A in a point and fix a point p' on K different from p and not
in A. Then p’ is collinear with a unique point in A. Suppose M is a line on
p’ not meeting A. Since there are infinitely many lines on p', M exists. Each
point of A is collinear with one point on M. Each point on M with 0, 1, 4 or
16 points of A. But then 4 points on M are collinear with 4 points in A and
2 points in M with no point in A. Hence p’ is collinear with 4 points in A. A
contradiction. d
Step 5. A Contradiction.

Proof. Let M be a line in @, not meeting A. Then every point of A is
collinear with one point in M and every point in M with 0, 1, 3 or 9 in A.
Thus if M contains a point collinear with only one point in A then the other
points in M are also collinear to some point in A, and there is a second point
on M collinear with just one point in A.

As in the previous step let p’ be a point on a line through p meeting A,
which is different from p, and not in A. So p’ is collinear with just one point in
A. Let M be a line through p’ not meeting A and suppose q is a second point
on M collinear with just one point in A. Let N be a line on p not meeting A.
Then all points on N except p are not collinear with any point in A. But ¢
is collinear with a point » in N different from p. Now the line gr contains a
point with no neighbors in A and a point with just one neighbor in A, which

contradicts the above. |
Since I is finite we can apply the results from [3], [6] and the proposition
is proved. U

The main theorem follows now from the Propositions 3.2, 3.3 and 3.9.
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Ovoids and windows 1n finite
generalized hexagons

V. De Smet H. Van Maldeghem *

Abstract
We characterize some finite Moufang hexagons as the only generalized
hexagons containing “a lot of” thick ideal subhexagons or as the only
hexagons containing ovoids all of whose points are regular.

1. Introduction

A generalized hexagon of order (s,t),s,t > 1isa 1 — (v,s+ 1,t 4 1) design
S = (P, B, I) whose incidence graph has girth 12 and diameter 6 , also denoted
by S(s,t). If s = ¢, S is said to have order s. The only known finite generalized
hexagons with s, > 1 arise from the Chevalley groups G,(q) and 3D,4(q) and
have respective order (g,q) and (g,¢%), ¢ power of a prime. We denote the
3D4(q)-hexagon by H(q,q>), its dual by H(q? q) and we denote the G2(q)-
hexagon by H(q), its dual by H*(g). An explicit description of these is given
in Kantor [2].

Note that H*(q) is always a subhexagon of H(q,q); dually H(q) is a
subhexagon of H(g% g). A subhexagon S’ of order (s',t') is called ideal if
t = t’ (see Ronan [4]). Furthermore, S is called thick if s, > 1. Note that
s = 1 or t = 1 corresponds to the incidence graph of a projective plane. With
these definitions, H(q) is a thick ideal subhexagon of H(g% ¢). Now consider
the following configuration in a generalized hexagon S. Let L; and L, be two
lines at distance 6 (in the incidence graph) from each other and let py, ps, p3
be three distinct points on L;. There are points p}, ph, p5 on L, at distance 4
from resp. p1, P2, ps and there are unique chains p; I M; Ip!IM!Ip,, ¢ =1,2,3.
The configuration consisting of the lines Ly, Ly, M;, M!, 1 = 1,2,3 and the
points p;, pl,p!, ¢ =1,2,3, is called a window of S. By the transitivity of
the collineation group of H(q?, q) there is a subhexagon isomorphic to H(q)
containing any given window. It is our aim to show the contrary, namely that
if every window of a thick generalized hexagon & is contained in an ideal
subhexagon, then S is isomorphic to H(g?,q).

Let d(z,y) denote the distance between z and y in the incidence graph

*. Research Associate at the National Fund for Scientific Research (Belgium)
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of a generalized hexagon S = (P,B,I), z,y € P U B. Denote by I'y(z), with
z € PUB, the set of all elements of P U B at distance i from z. If d(z,y) = 4
for ¢,y € P, then there is a unique point z collinear to both and we denote
z = x xy. Define W(z,y) = I's(z) N Ta(z) NTy(y). If u € W(z,y) then we
denote by z* the set of points collinear with z and at distance 4 from u. If
this set is independent from the choice of u, then z* is called an ideal line (see
Ronan [4]) and is denoted by {z,y). Now fix a point p € P and suppose that
(z,y) is an ideal line for every pair (z,y) € P? such that d(z,p) = d(y,p) =2
and d(z,y) = 4, then we call p half-regular. If moreover (p,z) is an ideal
line for every point z at distance 4 from p, then we call p regular. This
is motivated by the facts that (1) if all points of S are regular and S has
order s, then S = H(q), see Ronan [4], (2) a derivation can be defined in a
regular point of § and if s = ¢, then this is a generalized quadrangle (see Van
Maldeghem - Bloemen [7]). These properties are very similar to properties of
generalized quadrangles with regular points (see Payne - Thas [3]). In fact,
for generalized quadrangles of order s, one can show that, if every point of an
ovoid is regular, then the generalized quadrangle is classical and arises from a
Chevalley group S4(2°). In this paper, we extend this property to generalized
hexagons, an ovoid of a generalized hexagon of order s being a set of s* + 1
points at distance 6 from each other. There is one difference though: the
existence of ovoids in H(q) is only proved for ¢ = 3°. For g even, there are
no ovoids (see e.g. Thas [6]) and for other values of g, the question remains
open.

Also our characterization of H(q% ¢) has an analogue for generalized
quadrangles, (see Payne - Thas (3], 5.3.5. ii, dual), a window in a generalized
quadrangle being a quadrilateral with one more “transversal”.

2. Proof of the results

2.1. Characterization by windows

Lemma 2.1 Let S(s,t) be a finite generalized hexagon which contains a
proper subhexagon S'(s',t), which in turn contains a proper subhexagon
S8"(s",t). Then s = t3, s' =t and s" = 1.

Proof. From Haemers and Roos [1] it follows that s < t3 (1).

From Thas [5] we have s > st (2) and s' > s"%¢ (3).

So (1) and (2) gives s < t? or s’ <t (4).

Now (3) and (4) gives s” =1, and so s' = t.

From (1) and (2) it then follows that s = ¢3. o
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Theorem 2.2 Let § = (P,B,I) be a finite generalized hexagon of order
(s,t) with s > 3.

There exists a proper ideal subhexagon through every window of § iff § is
isomorphic to H(q,q), s =¢* and t = gq.

Proof.

< See introduction.

= In order to proof that & is Moufang we have to proof that & has
ideal lines. [4] So we must proof that for all a,b € P with d(a,b) = 4 and
a*b=c we have {(a,b) = ¢* for all z € W(a,b).

Step 1: We show that ¢* = ¢*' for all 2,2’ € W(a, b) such that c,z and
z' form a window with the same two lines , say L and M. Suppose z; and z;
are such elements of W(a, b).

Figure 1.

Let Si2(c, z1,22) be the proper ideal subhexagon through the window
¢,z1,22,L and M. Since s > 3 and S, is proper, there exists another point
b’ on M, with b" & S),. The shortest path between b” and L gives rise to
the point 23 € W(a,b) (see figure 1). Let Sia(c, 21, 23) be the proper ideal
subhexagon through the window ¢, z, 23, L and M. Remark that z; ¢ Si.
Finally, let Sz3(c, 22, 23) be the proper ideal subhexagon through the window
¢, 22, 23, L and M. Note that z; & S23. We will now look at some intersections
of those subhexagons. Let D, = Sy3(c, z1,23) N Saa(c, 22, 23), then D; is a
proper (z1 & S23 and z3 ¢ Si12) ideal subhexagon of Si2 and Sy3. Let Ds =
S13(¢, 21, 23) N Sza(c, 22, 23), then Dj is a proper (z; & Sa3 and z; & S13) ideal
subhexagon of S13 and S»3. If we apply the lemma to
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S(s,t) D S22 D Dy,
S(s,t) D Si3 D D
and S(S,t) D 523 D D
we have that S has order (t?,t), Si2, S13 and Sy3 have order (t,t) and D, and
D5 are thin ideal subhexagons. Now we can apply a corollary of the theorem
of Thas [5] to the following pairs of generalized hexagons:
(1) S12 O Ds.
z1 € S12\D; and not collinear with a point of D,,
so z; is at distance 3 from 1 4 t lines of D, C Ss3.
(2) S13 D Ds.
z1 € 513\ D3 and not collinear with a point of Ds,
so z; 1s at distance 3 from 1 + ¢ lines of D3 C Ss3.
(3) §D Saa.
z1 € 8\ 523 and not collinear with a point of Sy,
so z; 1s at distance 3 from 1 + t lines of Sja.
From (1), (2) and (3) it follows that D, and D3 have 1 + ¢t lines in common
which are at distance 3 from z;.
Case 1: Suppose that all those 1+t lines are at distance 3 from c. From
the thinness of D, and D; it follows that ¢ = ¢ = ¢*.
Case 2: Suppose at least one of those 1 4t lines is at distance 5 from c,
say L,. Let (c, Lo, lo, L1, l1, Ly) denote the shortest path between the line L,
and c. Since c and L, € D; (Ds) it follows that Lo, lo, L1, 1y € D; (Ds). From
D, it then follows that d(zs,ly) = 4 and d(z2,11) = 6. So there is a second
point on L, at distance 4 from z;. We deduce d(a’,l;) = 4. But [; and L liein
Ds so the shortest path between them is also in Da, a contradiction. So case
2 cannot occur and case 1 proves step 1.

Step 2:
o4
a b
LI MI
v m'
Z
Figure 2.
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Suppose z € W(a,b) so that ¢, 21,2, L and M do not form a window.
There exists a thin ideal subhexagon D through ¢, z;, L and M (see step 1).
So L' and M' € D. Let I’ and m/' be the respective second points on L' and M’
in D and denote I' *m' = 2'. Then from the thinness of D we have c* = c.
But applying step 1 we obtain ¢*' = ¢*. |

2.2. Characterization by subhexagons

Lemma 2.3 Let S = (P, B, I) be a finite generalized hexagon of order (s, t).
Through every 2 opposite, half-regular points there exists exactly one thin
ideal subhexagon.

Proof. Let p; and p; be two opposite, half-regular points of S. Since they
are opposite, we can take all lines through p, and consider the unique t 4 1
shortest paths of length 4 between p, and those t 4+ 1 lines. So we get in an
unique way, t + 1 points collinear with p; and ¢ 4+ 1 points collinear with p,.
Call them respectively zg,...,z: and yo,...,y: with z; ~y;, 1 =0,...,t

Because d(z;,yi+1) = 6, ¢ = 0,...,t (mod t 4 1), we can do the
same construction with each of these t + 1 couples of opposite points to get
for each z;, in a unique way ¢t — 1 points collinear with z;. We call them
zi, k=1,...,t — 1. Similarly we obtain for each y,;,;, t — 1 points collinear
with yiq1 and call them yi*', k=1,...,t — 1 and we can do this in such a
way that z} ~ yitt,

Now we have all the 2(t> + t + 1) points we need for a thin ideal
subhexagon. We still have to consider the lines through zi and through
yi,1=0,...,tand k=1,...,t—1. Since p; and p, are half-regular, the hy-
perbolic lines (zi,z;) = {zo, ..., 2} and (vi,y;) = {yo,...,ye} are ideal. Now
each of the y} belongs to W(m,, Ti-1), 80 d(yi,z;) =4 foreveryj € {0,...,t}.
So for each ], there is a line (z;, z) containing a point collinear with yj. But
the point z{ on that line belongs to W(y;,yj41), so d(ef,y:) = 4. Sincey; ~ v}
it must be that ] ~ yi. In this way we obtain all other lines of the thin ideal
subhexagon.

Remark that for a fixed y; , all y} are collinear with some point m,’ , Vj €
{0, ...,t}\{k} and that no two of the yi’s can be collinear with the same z;.
Moreover, for two points y} and y,j with ¢ # j, there is exactly one ] collinear
with both.

Indeed, there cannot be more than one, otherwise we would have a quad-
rangle in S. So if we look at all t —1 points z* ~ yi, m € {0,...,t}\{3,},
there is always one and only one 4, s = 1,...,t — 1, collinear with one of
those z ’s. Since we have t —1 such y”s and t — 1 such 2z} ’s, there is
exactly one of the =] collinear with y;. The same arguments hold for the z}.
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It is now straightforward to check that there is always a path of length
< 6 between two of the constructed elements. So we indeed have a thin ideal
subhexagon. a

Lemma 2.4 Let S = (P,B,I) be a finite generalized hexagon of order s
which contains an ovoid O for which all points are half-regular. Then every
thin ideal subhexagon of § contains exactly 2 points of O.

Proof.
(1) From lemma 2.3 it follows that through every 2 points of O there is
exactly one thin ideal subhexagon D. Moreover D cannot contain more
than 2 points of O since every other point of D is at distance < 4 from

3 1 3 .
one of those 2 points of O. So in total there are (ii—)s— thin ideal

subhexagons which contain two points of O.

(2) Suppose there are a thin ideal subhexagons in §. We count in two
different ways the number of pairs (z,D) with z € P, D a thin ideal
subhexagon of § and z € D. It then follows that

(1+s).(14+s*+s%).8 (s°+1).s°

- 2.(14s+s?) 2

The lemma follows from (1) and (2). |

Corollary 2.5 From the equality in the proof of lemma 2.4 it follows that
through every point © € P there are s3 thin ideal subhexagons. This means
that through every 2 points of § there exists a thin ideal subhexagon.

Theorem 2.6 Let S = (P,B,I) be a finite generalized hexagon of order s
containing an ovoid. Every point of an ovoid O is regular iff § is isomorphic
to H(q), g =s.

Proof.

<« This follows from Ronan [4].

= Due to Ronan [4] we have to prove that S has ideal lines. So, for
two points z,y € P with d(z,y) =4, z = ¢ *y we must prove that (z,y) =
2, Yw € W(a,b).

From lemma 2.4 it follows that there are s thin ideal subhexagons
D;, + = 1,...,s containing = and y. They can be obtained by choosing a
point y; on a line through y at distance 5 from z and they all contain 2
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points of O. Since z¥ = 2* Vw,w' € W(a,b) N D;, we have to prove that
M=z =, .=z withw; €D;, 1=1,...,s.

Case l: z € O or y € O then it is immediate that (z,y) is ideal.

Case 2: z and z are collinear with the same unique point p; of O. Let
py be the unique point of O collinear with y and denote the line through y
and py by L. With every point p on L\{y} there corresponds a thin ideal
subhexagon D, through z,y and p.

First we look at D,, and the hyperbolic line {z,y),, in Dp,. We will
show that the hyperbolic lines (z,y), in the other s — 1 D,’s are the same.
Let k be a point of L\{y, p,} and let D;, be the thin ideal subhexagon through
z,y and k. From lemma 2.4 we know that Dj, contains two points of O. Since
every point of Dy is at distance < 4 from at least one of those two points of
O, the point z is at distance 4 from one of them, say p. Since p and L are in
Dk, also the shortest path between them lies in Di. Denote p x k by a. Also
the shortest path between a and the line through z and z lies in Dy. Denote
axz by b (see figure 3).

P
z Yy
! Py
b k
a
Figure 3.

‘Suppose that (z,y)r = 2° is different from (z,y),,. So there is a line
M through z on which the point ¢ at distance 4 from a is different from the
point d at distance 4 from 7. Denote cxa by e and d xr by f. Since p, and
p are regular, we have ideal lines (r',p,) and (b,7) = (b,k) (see figure 3) .
From z € W(b, k) it follows that e € (b, k), so d(r, e) must be 4. Denote r x e
by g. From a € W(r',p,) it follows that g € (r’,p,) and so d(z,g) must be 4
which is a contradiction.
Case 3: y and 2 are collinear with the same unique point p, of O. This
is similar to case 2.
Case 4: z,y and z are collinear to different points of (J, say respectively
Dz, Py and p,.
(i) If p, € z* for some w € W(z,y) then (z,y) is ideal since p, is regular.
(11) So suppose there is a point ¢ on the line through 2 and p, at distance
4 from a point w € W(z,y). By case 2 we have that (¢,y) is ideal , so
(z,y) is ideal. O
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Flag-transitive L.C; geometries

D. Ghinelli

Abstract
We consider locally C; geometries where all planes are linear spaces
of order (r,s) (i.e. 2-designs with parameters 2-(r(s+1)+ 1,7+ 1,1)).
We call them L.C; geometries, for short. We give a classification of
flag-transitive L.C; geometries, under the hypothesis that residues of
points are classical generalized quadrangles of order (s,t), s,t > 1.

1. Introduction

An L.C,; geometry of order (r, s, 1) is a Buekenhout geometry with three types
of varieties (points, lines and planes) belonging to the diagram

L
o o 0
r s t
where the stroke
L
o——0
T s

denotes the class of linear spaces of order (r, s), namely 2-(r(s+1)+1,7+1,1)
designs, while

Oz=——0
s t

is the class of generalized quadrangles (abbreviated GQ) of order (s,t). The
reader is referred to [12] for background and notation, and obviously to [6],
[7], [21] (see [33], [36] [37] and [38] for further details on GQs).

Our purpose is to classify all L.C, geometries with a flag-transitive
automorphism group G (i.e. an automorphism group transitive on maximal
flags). We call them flag-transitive L.C, geometries.

In all of this paper, we denote by I' a flag-transitive L.C, geometry
of order (r,s,t) with t > 1 (i.e. we exclude grids as residues of points) and
s > 1 (i.e. only thick GQs appear), and by G < Aut(T') a flag-transitive group
acting on I'. If z 1s a variety of T, then G, is the stabilizer of z in G, K, is
the elementwise stabilizer of the residue I'; of = (i.e. the kernel of the action
of Gz on T';) and G, = G, /K, is the action of G, on T;.
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Clearly the residue I'p of a point P of I' must be a flag-transitive GQ,
but unfortunately the classification of flag-transitive GQs is not yet com-
pleted. However (see [23] p. 98, Summary) apart from four sporadic cases
(given by T;(O,) for some oval O, in PG(2,q) with ¢ = 4 or 16, and their
duals), the only presently known flag-transitive thick GQs are the classical
ones with t > 1 (see the proof of lemma 1.3 below, for a definition). Therefore
it seems natural to make the further assumption that the residues of points
are classical GQs. Then I is said to be a classical L.C; geometry.

When r = 1, then

L c

o 0=0 0

1 s 1 s
is the diagram of a circle geometry (i.e. a complete graph on s + 2 vertices).
Thus L.C, geometries of order (1, s,t) belong to the diagram c.C;

0 £ o )

1 s t
and the classification of flag-transitive classical c¢.C, geometries was given in
theorem 4 of [15], namely:

Theorem 1.1 If T is a flag-transitive c.C, geometry with thick classical
residues then
(i) T is either an affine polar space of order 2 or a standard quotient of
such an affine polar space, or
(ii) T is one of the six examples 'y, - -+, T'¢ below, for which we recall some
essential information:

‘ geometry ” group? l (s,t) Iresidues"’ ’

Ty Us(2) [(3,3)] W3
Ly McL (3,9 Q:(3)
Is 05(3) | (4,2)] Hy(2)
Szl;;th 3:-05(3) | (4,2) | Ha(2?)

Ts
Patterson Suz (9,3) | Ha(3?%)
YosI}‘lsia.ra Aut(HS) | (9,3) | Ha(3?)

The reader is referred to 4.5 in [15] for a proof, which brings together
contributions by Buekenhout and Hubaut [10], Blokhuis and Brouwer ([3] and

1. We only give the minimal flag-transitive automorphism group.
2. Isomorphism type of the point residues.
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an unpublished paper quoted in [5], page 399), Weiss and Yoshiara ([40] and
also [42]).

The proof essentially depends on three celebrated results on permuta-
tion groups, namely Seitz theorem [34] (see [23], theorem C.7.1 or (28}, § 4),
a theorem of Suzuki [35] and Tits [39] on 1-point extensions of Ls(g), and
the classification of 2—transitive permutation groups [11].

A proof of theorem 1.1 can also be achieved using coset enumeration
(Yoshiara [42]). For the case in which grids appear as point-residues, see [29]
which also explains the reason of our assumption ¢t > 1.

The purpose of this paper is to prove a classification theorem for r > 2.
Clearly, residues of planes are flag-transitive linear spaces; from the classifica-
tion of flag-transitive linear spaces announced in [9] we have immediately the
following result (see section 2 and 3 of [9] for a description of the examples
or, in this paper, section 2; see also [8] for a discussion of the background to
this problem and for further references).

Lemma 1.2 Let I be a flag-transitive L.C; geometry of order (r, s,t) with
classical point-residues, r,s,t > 1, and let G < Aut(T') be a flag-transitive
group on I'. Then either the residue Iy of a plane 7 of I is one of the following
(1) a desarguesian projective space of dimension d > 2,
(2) a Hermitian unital,
(3) a Ree unital,
(4) a Witt-Bose-Shrikhande space,
(5) a desarguesian affine space of dimension d > 2 and the group G, in-
duced on I’y by the stabilizer G, is not 1-dimensional,
(6) a non desarguesian translation affine plane,
(7) a Hering space,
or
(8) T has ¢ = p? points (p prime) and G, is a subgroup of the group
ATL(1, q) of 1-dimensional semilinear affine transformations.

The following two lemmas will be needed in the next section:

Lemma 1.3 Let ' be an L.C, geometry of order (r,s,t), then r < s. If T
has classical point-residues and s,t > 1, then s and t are powers of the same
prime.

Proof. Trivially, given a maximal flag (P,£,7) of I, the number r + 1 of
points in £ is less than or equal to the number s + 1 of lines through P in
the linear space 7. Since t > 1, grids are excluded as residues of points. Thus
the classical GQs occurring as point residues are necessarily the geometries
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of points and lines of a nonsingular algebraic variety of PG(d, q) of one of the
following types (see [33], 3.1.1, p. 36):
(1) a nonsingular quadric Q4(g) or an elliptic quadric Q5 (g) of projective
index 1 in PG(d,q), d = 4 or 5 (here (s,t) = (q,9) or (g,4?%)),
(i) a nonsingular Hermitian variety Hy(g%) of PG(d, q?), d = 3 or 4 (here
(s,t) = (¢°,9) or (¢*,4%)),
(iii) a symplectic variety W(g) of PG(3,q) (here (s,t) = (g, 9)).
Therefore s and t are in all cases powers of the characteristic p of GF(g). O

Lemma 1.4 LetT be a flag-transitive classical L.C, geometry of order (r, s, t),
withr,s,t > 1 and with flag-transitive group G < Aut(T'). If (P, ) is a point-
plane flag in ') then one of the following occurs:

(1) The group Gp contains a classical group in its natural action on the

classical generalized quadrangle T'p.

(2) Fp = Q4(2) and ap = As.

(3) Tp = Q4(3) or W(3), and Gp = 2* - A, 2* - S or 2* - Frob(20).

(4) Tp = Hj(3%) or Q5(3), and Gp = La(4) - 2 or Li(4) - 22.
Furthermore, in case (1) the stabilizer (Gp), acts as a 2-transitive group on
the lines through P incident with .

Proof. The first part of the statement follows from a theorem of Seitz [34]
(see [23], theorem C.7.1, and also 28], §4).

As for the last part, we note that the stabilizer of a “line” n of the
GQ(s,t) T'p (hence of a plane = on the point P of T') is 2-transitive on the
“points” of the “line” 7 of I'p (hence on the lines of ' through P, incident
with 7). O

Dually, in a classical GQ(s,t) (hence in I'p) on which we have the
natural action of a classical group, the stabilizer of a “point” is 2-transitive
on the “lines” through the “point”. Therefore for every point-line flag (P, £)
of T the stabilizer (Gp); is 2-transitive on the planes through P incident with
L.

In the rest of the paper we apply 1.2, 1.3 and 1.4 to prove (see theorem
4.1 for a precise statement) that a classical flag-transitive L.C, geometry is
either one of the following known examples (see [12], [30], [32])

1. a polar space (of rank 3),
2. the A7 geometry, that is the flat C3 geometry for the alternating group

A'Ia

3. an affine polar space (of rank 3),
4. astandard quotient of an affine polar space (of rank 3),
or
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5.7 = s — 1 with s = 3,9. In these small sporadic cases, we also give
information on the possible groups acting on the residues (see 4.1 (ii1)).

In any case the only linear spaces which appear as residues of points

are (desarguesian) projective or affine planes, for which we use the diagrams

L
o 0 = 0O 0
8 s s 8
or
Af L
o 0=o0 0
s—1 s s—1 s

The proof of 4.1 (ii) suggests the following conjecture.

Conjecture 1.5 In the small cases in 4.1 (iii) ' is a (possibly improper)
standard quotient of an affine polar space.

By a result of Cuypers [14], in order to prove the conjecture, it is enough to
prove that in each of the above cases the following property holds

(LL) Given any two points, there is at most one line on them.

2. The cases where G, is almost simple or affine

In this section we consider the cases (1)-(7) of lemma 1.2, which correspond
to the examples of linear spaces with a group almost simple or affine in [9].

Proposition 2.1 Letw be a plane of a flag-transitive classical L.C, geometry
of order (r,s,t), with r,s,t > 1. Then the residue I'y of 7 cannot be

(i) a desarguesian projective or affine space of dimension d > 2,
(ii) a Ree unital,
(iii) a Hering space.

Proof.
(1) Let 'y be a desarguesian projective space PG(d,q) of dimension d > 2
and order g = p" (p prime). Then

r=g, s=¢" 4+ T+ g+1-1=g(¢* P+ +1).

By lemma 1.3, s must be a power of a prime. Hence d = 2.
Similarly, if 'y is a d-dimensional desarguesian affine space AG(d,q)
(d > 2), then

r=g-1, s=g¢" 4¢P+ 4y,
so that lemma 1.3 implies d = 2. This completes the proof of (i).
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(ii) For any integer e > 0 and g = 3?**!, the Ree unital Ur(q) of order ¢
is the linear space of order (r,s) = (g,q* — 1) whose points and lines
are, respectively, the Sylow 3-subgroups and the involutions of the Ree
group 2G,(gq) (whose order is ¢*(¢*> + 1)(g — 1)). A point and a line are
incident, if and only if the involution normalizes the Sylow 3-subgroup
(see [24]).

If T'y ~ Ur(q), since s = (g —1)(g+1) is a power of a prime, by lemma
1.3 we get ¢ = 2, a contradiction.

(iii) Hering spaces are the two nonisomorphic flag-transitive linear spaces of
order (r,s) on v = r(s+1)+1 = 3% points with line size 32 constructed
by Hering in [20]. Therefore r = 32 — 1, so that s = 3* + 32 = 90 which
is not a power of a prime, a contradiction. O

Proposition 2.2 Let 7 be a plane of a flag-transitive classical L.Cy geometry
of order (r,s,t), with r,s,t > 1. If the residue 'y of = is a Hermitian unital,
then I'y is AG(2,3) and r = 2.

Proof. For any prime power g, the Hermitian unital Ug(q) of order g
is the linear space on ¢* + 1 points with line size ¢ + 1 whose points and
lines are respectively the absolute points and nonabsolute lines of a unitary
polarity in PG(2, ¢%), the incidence being the natural one. Any group G with
PSU(3,q) < G < PTU(3,q) acts flag transitively on Ug(q).

IfT'x ~ Un(g),thenr = gand s = [(v—1)/r]—1 = ¢*—1 = (g—1)(g+1).
Therefore, lemma 1.3 implies ¢ = 2, and so r = 2, s = 3 and Iy is isomorphic
to the affine plane AG(2,3). O

Proposition 2.3 Let 7 be a plane of a flag-transitive classical L.C, geometry
of order (r,s,t), with r,s,t > 1. Then the residue I', of 7 cannot be a Witt-
Bose-Shrikhande space.

Proof. Starting from the group PSL(2,2") with n > 3, Kantor (see [22])
defined a flag-transitive linear space W(2") as follows: the points are the
subgroups of PSL(2,2") isomorphic to the dihedral group of order 2(2" + 1),
the lines are the involutions of PSL(2,2"), a point being incident with a line
if and only if the subgroup contains the involution. W(2") has 2*~1(2" — 1)
points, line size 7 + 1 = 2! (hence 2" + 1 lines on every point). W(2")
is called a Witt-Bose-Shrikhande space because the first description (using
the Miquelian inversive plane of order 2™) dates back to the classical paper
of Witt [41], while a second geometric description, using a complete conic
C (i.e. the union of an irreducible conic and its nucleus) in PG(2,2"), was
given by Bose and Shrikhande in [4]. Here the points of W(2") are the lines
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of PG(2,2") disjoint from C, the lines of W(2") are the points of the plane
outside C, the incidence being the natural one.

The group PI'L(2,2™), which is the stabilizer of C in the automorphism
group of the plane, is isomorphic to Aut(W(2")) and is flag-transitive on
W(2"). Any group G with PSL(2,2") < G < PTL(2,2") acts flag-transitively
on W(2M).

KT, ~W(2"), then

r=2""1_1 and s=2"
Furthermore, the stabilizer of a point P in 7 induces a subgroup
(Gx)p < (PTL(2,2))p

hence has an order dividing 2(2" + 1)n.

This gives a contradiction in case (1) of lemma 1.4, since (G.)p should
be 2-transitive on the s + 1 lines through a point P of W(2"), by lemma 1.4.

Case (2) of lemma 1.4 is impossible, since then s = 2 impliesn = 1 and
r = 0 (while r > 1).

In the cases (3) and (4) of lemma 1.4, we have s = 3 or 9, contradicting
s = 2™. This completes the proof. O

Corollary 2.4 Let T’ be a flag-transitive classical L.C; geometry of order
(r,s,t) withr,s,t > 1, and let G < Aut(T') be flag-transitiveon I'. If G, (7 a
plane of I' ) is almost simple (i.e. has a non abelian simple normal subgroup
N such that Na G, < Aut(N)) then T’y ~ PG(2,q) and

PSL(3,9) < G < PTL(3,q).

Proof. This follows immediately from propositions 2.1 (1) and (ii), 2.2, 2.3,
and from the results in [9] (sections 1 and 2). o

Next we consider the case where Gy is affine. By 2.1 (i) and (iii) we
only have to consider the cases where 'y is a desarguesian affine plane or a
non desarguesian translation affine plane.

Proposition 2.5 Let 7 be a plane of a flag-transitive classical L.C, = Af.C,
geometry of order (s —1,s,t), with s,¢ > 1. If the residue I'y of 7 is desargue-
sian and the group G, is not 1-dimensional, then Gy is 2-transitive (hence

given in [26]).

Proof. If T, is a desarguesian affine plane and the group G, is not 1-
dimensional, then one of the following holds (see 3.1 in [9])
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(a) Gy is 2-transitive (hence given in {26)).

(b) s = 11 or 23 and G is one of the three soluble flag-transitive groups
given in [17], table II,

(c) 8=9,11,19,29 or 59, the last term in the derived series of (Gx)p (P a
point in 7) is 2 - As and G, is given in [17], table II.

Now, it is not too difficult to rule out cases (b) and (c) using table II
in [17) and lemma 14. In case (1) of lemma 1.4, (Gp), is 2-transitive on the
s+ 1 lines through P in =, therefore (1 4+ s)s must divide |(Gp)«| = |Gx|/s%.
Otherwise we have case (c) with s = 9, I'p = H3(3%) and (Gr)p = SLy(9) or
SLy(9) -2 = Myo. Hence G, ~ ASL(2,9) or 92 - Mo, which are 2-transitive.
This completes the proof. O

Proposition 2.6 Let 7 be a plane of a flag-transitive classical L.C; geometry
of order (r,s,t) with r,s,t > 1. Then the residue I'y of v cannot be a non
desarguesian translation affine plane.

Proof. IfI'; is a non desarguesian translation affine plane, then one of the
following holds (see 3.2 in [9])

(a) Ty is one of the Lineburg planes, constructed in [25]. These are affine
planes of order s = ¢?, where ¢ = 22¢*! > 8, and ?B,(q) < (Gx)p <
Aut(’Bx(q)))-

(b) T, is the Hering plane of order 27 constructed in [19]. Here (Gr)p =
SL(2,13) and G is 2-transitive on the points of I'.

(c) Tx is the nearfield plane of order 9. Here there are seven possibilities
for G, given by Foulser in [18], §5.

In case (a), (Gx)p contains a Suzuki group Sz(22¢*1), e > 1. This gives
a contradiction, since s > 64 implies that (G,) p 1s classical, and no classical
group satisfies this condition. Therefore case (a) does not occur.

In cases (b) and (c) the automorphism group Aut(I'y) is 2-homogeneous.

The stabilizer (Gx)p of a point P in Hering’s plane of order 27 is iso-
morphic to SL(2,13). Now (Gx)p is 2-transitive on the 28 lines through P in
7, because Gp is classical, hence 2827 must divide |SL(2,13)| = 13.2%.3.7,
a contradiction. Therefore case (b) cannot occur.

The stabilizer of a point in the nearfield plane of order 9 1s isomorphic
to Ss - 2% 2, preserves a pairing of the 10 points at infinity and acts on this
set of 5 pairs as the symmetric group Ss ([1], see also [18] and [25]). Thus the
order 9 divides 5!-2*-2, which gives a contradiction and case (c) is impossible.
m]
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3. The 1-dimensional affine case

Let T be a flag-transitive classical L.C, geometry of order (r,s,t) withr,s,t >
1 and let G < Aut(T") be a flag-transitive group on T'.

In this section, I’y (7 a plane of I') has v = ¢ = p? points (p prime) and
H := G, is a subgroup of the group

ATL(1,q) = {x — az” + b|a,b € GF(q), a # 0, o € Aut(GF(q))}

of 1-dimensional semilinear affine transformations.

Remark 3.1 Since |ATL(1,q)| = q(¢ — 1)d, |H| = |G,| divides g(g — 1)d.
The stabilizer Hp of a point P of 7 is a subgroup of the stabilizer of a
point (for instance the point 0) in AT'L(1, g). Thus

Hp <[ATL(1,9)]o = {z +— az” |a € GF(q) — {0}, o € Aut(GF(q))},

which is a semidirect product of two cyclic groups: one of order g — 1 (the
multiplicative group of GF(q)) and one of order d (the group Aut(GF(q)).
We write Hp < (g —1)-d.

The commutator subgroup [Hp, Hp] is then a cyclic group whose order
divides ¢ — 1 and is trivial if d = 1.

In particular, case (1) of lemma 1.4 cannot occur since Hp is not 2-
transitive on the s 4+ 1 lines through P in .

Remark 3.2 T, is a linear space of order (r,s) withv = r(s+1)+1=g=p*
points, thus r = (p? — 1)/(s + 1) and every line of I'p has exactly

p?+s
s+1

points. Since H is flag-transitive, r + 1 divides | H| which divides g(g—1)d by
the first remark. Therefore

r+1=

p?+s

ST 1 divides p?(p? — 1)d.

Next we examine the cases (2), (3) and (4) of lemma 1.4.

Proposition 3.3 There is no flag-transitive geometry I' belonging to the
diagram

2 2 2
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with a flag-transitive group G < Aut(T') such that for any point-line pair
(P,)
G. < ATL(l,q), Tp=Q4«2) and Gp= As.

Proof. Since I'p = @Q4(2) has 15 points, the order of the stabilizer of a
“line” 7 of T'p is

15 15

Hence (Gp)x is a maximal subgroup of order 24 of As, therefore it is iso-
morphic to S4. The commutator subgroup of S4 is A4 which is not cyclic,
contradicting remark 3.1. O

Proposition 3.4 There is no classical flag-transitive L.C, geometry I' be-
Ionging to the diagram

O’—L_O:O

g 9 3
with r > 1 and with a flag-transitive group G < Aut(T) such that G, is a
subgroup of ATL(1,q).

Proof. Here I'p = H3(3?) and Gp = La(4) - 2 or La(4) - 2%. Thus (Gp), =
L5(9) or Ly(9)-2, respectively. Now L,(9) is simple, and we are very far away
from the semidirect product we should have by remark 3.1. Also L,(9) -2 is
highly unsolvable and, again by remark 3.1, this group cannot occur. O

Proposition 3.5 There is no flag-transitive L.C;, geometry T' belonging to
the diagram

O—————0—=—o0

3 3 t
with a flag-transitive group G < Aut(T) such that G, is a subgroup of
ATL(1,q).

Proof. In thiscase I'y = PG(2,3) and it is well known that a 1-dimensional
affine group cannot act flag-transitively on PG(2,3) (see for example Dem-

bowski [16]). m]
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It remains to consider the cases (see lemma 1.4) in which I has diagram

Af
O O=————""0
2 3 t
with ¢ = 3 or 9. In both cases, since (r,s) = (2,3) we have p? = 9, thus p = 3

and d = 2.

4. The main theorem
In this section we apply the previous results to prove the following classifica-

tion theorem (see theorem 1.1 for the case r = 1).

Theorem 4.1 Let I’ be a flag-transitive Buekenhout geometry belonging to
the diagram

O—————O0——0
r S

with classical point-residues, r,s,t > 1, and let G < Aut(T") be flag-transitive
on I'. Then one of the following holds

(i) Ty is a desarguesian projective plane and I' is either a polar space or
the A; geometry,

(ii) Tx is a desarguesian affine plane and T is an affine polar space or a
standard quotient of an affine polar space,

(iii) T, is a desarguesian affine plane of order 3 or 9, the group G, induced
by G is 2-transitive on points (hence is given in [26], Appendix 1), and
either (s,t) = (3,3), T'p = Q4(3) or W(3), and Gp = 2% - 45, 2* - S5
or 2* - Frob(20), or (s,t) = (9,3) or (3,9), I'p = H3(3?) or Q5(3),
and Gp = L3(4) - 2 or La(4) - 22.

Proof. From the classification of flag-transitive linear spaces announced in
[9] we have for the residue I'y of a plane 7 the 8 possibilities given in lemma
1.2.

Since I has classical point-residues, s and ¢ are powers of the same prime
(lemma 1.3). This implies that desarguesian projective spaces of dimension
d > 3 and Ree unitals cannot occur as plane residues (prososition 2.1). Using
lemmas 1.3 and 1.4 we proved that Hermitian unitals of order ¢ > 2 (proso-
sition 2.2) and Witt-Bose-Shrikhande spaces (prososition 2.3) cannot occur.
Hence when the group G, is almost simple (i.e. in cases (1)-(4) of lemma
1.2), we have necessarily I'y ~ PG(2,q) and PSL(3,9) < G, < PTL(3,9).

Now I' has diagram

[} O —0
q q t
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with t = ¢ when T'p = Q4(g) or W(q), t = ¢* when T'p = Q5 (q),t = /g when
T' = Ha(q) (g a square) or t = q,/g when I' = Hy(q) (g a square). It follows
from [2] that T is either a polar space or the A; geometry. This proves (i).

In the affine case (i.e. in cases (5)—(7) of lemma 1.2), since s and ¢t are
powers of the same prime by lemma 1.3, desarguesian affine spaces of dimen-
sion d > 3 and Hering spaces cannot appear as plane residues (prososition
2.1(i) and (iii)). We proved in prososition 2.6 that non desarguesian transla-
tion affine planes cannot occur as plane residues. Hence the only remaining
case is when 'y 1s a desarguesian affine plane of order s = g.

Now T’ belongs to the diagram

Af

o O====—0
g-1 q t
and by prososition 2.5, if the group G is not 1-dimensional, then G, is 2-
transitive (hence given in [26]). Since r = ¢ — 1 > 1, case (2) of lemma 1.4
cannot occur. Therefore we are either in the cases (3) and (4) of lemma 1.4,
and these give (iii), or the group Gp contains a classical group in its natural
action on the classical generalized quadrangle I'p. To settle this last case, we

recall that, if the following property holds
(LL) Given any two points, there is at most one line on them

a result of Cuypers [14] implies that I’ is either an affine polar space or a
standard quotient of an affine polar space. Hence, to get result (ii), it suffices
to prove that (LL) holds in I’ when the group Gp contains a classical group
in its natural action on the classical generalized quadrangle I'p.

By contradiction, assume that there are two points P and @ joined by
at least two different lines £, £'. Clearly, £ and £’ are not coplanar (since the
residue of a plane is a linear space), and all the lines joining P and @ are
pairwise non coplanar. In the GQ(q,t) which is the residue of P, these lines
form a set of pairwise non collinear points, hence their number is at most the
number gt + 1 of points of an ovoid of I'p. This implies that there are at most
gt lines different from £ through P and Q. Now Gp, fixes a set of at most
gt(q — 1) lines on P (namely the lines different from £ meeting £ in a point
different from P), therefore also (Gp), fixes a set of at most gt(q — 1) lines
on P. This is impossible since (Gp); is a classical stabilizer of the ‘point’ £ in
the classical GQ I'p, hence must be transitive on the gt ‘points’ of I'p non
collinear with £ (i.e. on the ¢?t lines through P non coplanar with £), and
q’t > qt(g—1). This contradiction proves that property (LL) holds in I'. This
completes the proof of (ii).

In the 1-dimensional affine case (i.e. in case (8) of lemma 1.2), case (1)
of lemma 1.4 cannot occur (see remark 3.1).
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In case (2) of lemma 1.4, s =¢t = 2. Since 1 < 7 < s (lemma 1.3), we
have r = s =t = 2. We ruled out this possibility in prososition 3.3.

In case (3) of lemma 1.4, s = 3, thus 1 < r < s implies » = 2 or 3 and
residues of planes are affine or projective planes of order 3. But » = 3 cannot
occur (see prososition 3.5) and so the only possible case is an A f.C; geometry
of order (2,3, 3).

In case (4) of lemma 1.4, if s = 3 (i.e. 'p = Q5 (3), thus ¢t = 9) we have,
similarly, that the only possible case is an Af.C; geometry of order (2, 3,9).

The case s = 9 cannot occur in the 1-dimensional affine case, as proved
in prososition 3.4. O

Remark 4.2 (added in proof) A. Del Fra has informed us that he has now
proved our conjecture, showing that (LL) holds in each of the cases of 4.1 (iii)
and using [14], as suggested in the introduction.
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On nonics, ovals and codes in
Desarguesian planes of even order

D. G. Glynn*

Abstract

A nonic in PG(2,q), ¢ = 2%, is defined to be either a non-degenerate
conic plus its nucleus, or a degenerate conic, different from a repeated
line, minus its nucleus. It is noted that every nonic is in the dual-
line code of the plane, and so several questions arise. Can we have
collections of nonics generating this code? Each oval (or (¢ + 2)-arc) is
the sum (mod 2) of various numbers of nonics — what is the minimum
number?

1. Introduction

There are four kinds of conics in a projective plane 7 := P(G(2, q) over a finite
field GF(q); see [5). These are:
(1) an irreducible conic, having precisely g + 1 points;
(2) two distinct lines, having 2¢ + 1 points;
(3) two lines in the quadratic extension PG(2,¢?), intersecting in a point
of w, and so having only one point;
(4) a repeated line.
When g is even (and so ¢ = 2*) the first three types of conics define
a certain point called the nucleus, which lies on the conic if and only if the
conic is reducible. In the first case it is the point of intersection of all the
tangents; in the second it is the intersection of the two lines; in the third case
the nucleus is the only point of 7 that is on the conic.
A nonic is defined to be a conic plus its nucleus: there are three kinds
of nonics
(1) an irreducible conic plus its nucleus, having precisely g+ 2 points, which
form a (g + 2)-arc — an arc has no three points collinear;
(2) two distinct lines (a kne-pair), minus their point of intersection, having
2q points;
(3) two lines in the quadratic extension PG(2,4¢?), minus their point of
intersection, and so having no points in 7.

*

. This research was supported by a von Humboldt Fellowship at the University of
Tiibingen, and gratitude is due to a delayed rapido between Florence and Bologna.
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Let us distinguish the three types of nonics, of types (1), (2), and (3), by
calling them irreducible, degenerate, and imaginary respectively. Thus these
nonics have ¢ + 2, 2q, and 0 points respectively.

The dual-line code of the plane is the vector space (over GF(q)) of all
functions from the points of 7 to GF(q) such that the sum of the values on
any line is zero — any such function is called a 1-good function. The rank
(over GF(p) or GF(q), where ¢ = p*, p prime) of the point/line incidence
matrix of the Galois plane PG(2,q) is (";l)h + 1; see [4] or [7]. (Also see [3]
for an interpretation and proof of this by counting terms of algebraic 1-good
functions.) Since the dimension of a code plus the dimension of its dual is the
dimension of the space that contains both codes it follows that the dimension
of the dual-line code (with p = 2) is

h
P+a+1-[(*3") +1=¢-3"+4g

Thus the number of 1-good functions of the plane is qqz‘ah*'q, and there exist
sets of ¢> — 3" + q independent 1-good functions such that every 1l-good
function is the sum of these in a unique way.

All the codes (over GF(gq) or GF(p), where ¢ = p*, p prime) defined as
sets of functions that have zero sums for all subspaces of fixed dimension u
in PG(n, q), have been shown to consist of algebraic u-good functions having
terms with certain properties; see [3].

From now on we consider any set of points to be the same as its charac-
teristic function, which is one on the set and zero off it. The interesting thing
about nonics is that their characteristic functions are 1-good. To see this it
is necessary to show that every line intersects a nonic in an even number of
points. (This is obvious with the imaginary nonic, and there are only a few
cases to check for the other types: we leave this as an exercise.) Hence we
have the following main questions:

(1) Which collections of nonics generate the dual-line code, and can we find
collections which are fairly small?

(2) Given any l-good function O of 7 denote by n( () the minimum number
n of nonics such that the function is a sum of n nonics. The problem is
to calculate or give bounds for the value of n(0), in particular for the
case where O is an oval (or (g + 2)-arc).

2. Cubic curves and nets

As an aid for an answer to the previous questions let us define an independent
net of nonics to be the set of g2+ g+ 1 nonics generated algebraically by three
given independent nonics, which have nuclei lying in a triangle of the plane.
The net A can be written {N(n) | n € 7}, where A/(n) is the unique nonic of
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the net having nucleus n, and where also A'(n) = C(n) + n, where C(n) is the
conic of the net with nucleus n. Note that we are considering characteristic
functions when we write C(n) and n.

The simplest ezample of an independent net is that generated by the
three line-pairs of a triangle. Then the three nuclei are the vertices of the
triangle. Naturally, any minimal sum of nonics can be assumed to not contain
imaginary nonijcs because these have no points in .

Here we include some of the relevant parts of the theory of cubic curves
in a plane 7 over a field K of characteristic two; see, for example, [2].

A general cubic curve of 7 is defined to be a set of points

C(A,a) = {(2,y,2) € 7 | (z,y,2)A(z% 4%, 2°)' + azyz = 0},

where A is a 3 x 3 matrix over K and a € K, such that A and @ are not both
zero.

The first polar with respect to C = C(A,a) of a point (z,y,2) of 7 is
the conic

(:B, Yy Z)C = Q[(z; Y, Z)Ar a(z,y, Z)] =
{(r,s,%) | (z,9,2)A(r? s*, 1)t + a(zst + yrt + 2rs) = 0},
if (z,y,2)A and @ are not both zero.

The tangents of C passing through a general point (z,y,z) of 7 are
found by finding the intersection of the first polar of (z,y,z) with C, then
joining these points to (z,y,2). If a # 0, the nucleus of the first polar conic
at (z,y,2), Ql(z,y,2)A,a(z,y,2)], is (z,y, z), and clearly the set of all first
polars to such a cubic with @ # 0 is an independent net. Conversely, three
conics with independent nuclei (e.g. (1,0,0), (0,1,0), (0,0,1)) determine a
cubic curve, which must have a # 0. Thus, a plane cubic curve with a # 0
determines and is determined by an independent net. The cubic curve of the
net is given by the nuclei of the reducible conics (or of the degenerate and
imaginary nonics) in the net. In the previous example the corresponding cubic
curve is the degenerate cubic which is the product of the three lines of the
triangle.

3. Some answers

Now let us return to the finite world where * = PG(2, g), g even.

Lemma 3.1 If f is a 1-good function of 7 and N = {N(n) | n € n} is an
independent net of nonics then

f = Zaexf(n).N(n).
(Note that N(n) is the characteristic function of the nonic with nucleus n in

N.)
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Proof. The conics of the net which pass through any fixed point P of =
form a linear pencil, the nuclei of which lie on a line. Hence the sum of conics,
which have values assigned from a function in the dual-line code, is zero. The
corresponding sum of nonics gives the 1-good function. Algebraically we have
the following:

Znex f(n)N(n) = Zf(n).(C(n) +n)
= Zf(n).C(n)+ Zf(n)n =0+ Zf(n)n = f.
O

Theorem 3.2 Any independent net N of nonics generates the dual-line code
of the plane.

Proof. Any nonic has a characteristic function that is 1-good. Hence the net
generates a sub-code. Now let f be any 1-good function. The above Lemma
shows that f is contained in the sub-code generated by the nonics of A, and
so the sub-code is the whole code of 1-good functions. o

From this theorem we obtain a series of results which shed a lot of light
on the main questions posed above.

Corollary 3.3 There is a set of g> + ¢+ 1 irreducible nonics generating every
1-good function.

Proof. Consider a cubic curve made up of three lines of a triangle in the
cubic extension of w, and having no points of w. All the nonics in the polar
net are irreducible because reducible conics in the net of a cubic curve come
from points of the cubic in 7. (The nonics of such a net form an orbit under
a Singer cycle of the plane.) O

Theorem 3.4 n(O) < q— 1, for all ovals O of 7.

Proof. Consider the polar net corresponding to any triangle of points on
O. Since any nonic has a characteristic function that is 1-good, we see by the
Lemma that the oval is the sum of the ¢ 4+ 2 nonics of the net having nuclei
on the oval. Of these nonics ¢ — 1 are irreducible because their nuclei do not
lie on the triangle. The remaining three nonics are reducible. However, it is
perhaps unexpected that the sum of these three nonics is zero, because each
point on a line of the triangle is on two of the three nonics, and each point
not in the triangle is obviously on none of the three degenerate nonics of the
net. Hence the oval is the sum of q — 1 irreducible nonics. ]

Note that when ¢ > 4 it is possible to find a triangle of lines that are all
external to a given oval. Then taking the polar net of the triangle would give
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a representation of the oval as the sum of q + 2 irreducible nonics. Also, the
set of nuclei of the imaginary nonics of any independent net form an arc ; see
[2]. If a cubic curve (with zyz term) can be found so that it intersects the oval
in a fairly large number of points of this imaginary type, then the number of
nonics (of the other two types) needed to sum to the oval is reduced. This
observation is the stimulus for the following.

Theorem 3.5 For the irregular oval (18-arc) I of PG(2,16) there holds
n(T) < 9. This oval is the sum of 9 irreducible nonics.

Proof. There is a nice representation of 7 as a sum modulo 2 of two cubic
curves, one of which has equation z3 + 3 + 23+ §zyz = 0, and the other with
equation z3+y3+23+8%yz = 0, for some § € GF(16)\ GF(4); see [2]. (In the
notation of §2 the matrix A is the 3 x3 identity matrix and a = § or §*.) These
cubics both have 18 points, and they intersect in 9 points (the inflections)
of the Baer subplane PG(2,4) consisting of the points with coordinates in
GF(4). Consider one of these curves. The polar conics at points of the curve
in the subplane are all line-pairs, while the polar conics at points not in the
Baer subplane are imaginary — these 9 points are in Z. Using Lemma 3.1 we
see that 7 is the sum of 9 imaginary nonics and 9 irreducible nonics. However
we can omit the 9 imaginary nonics as they have no points in PG(2,16). O

It is to be expected that even fewer nonics can be found to add to a
given oval, because in the cases above we have only used 3 independent nonics.
More than 3 (up to 6) independent nonics could be used. The question about
the minimum number of nonics is applicable to any element of the dual-line
code of the plane, but the author hasn’t tried to answer that more general
question. Other linear collections of algebraic curves (or varieties) could be
used to generate codes in PG(n,q), but nonics do appear to be a very nice
example of this kind of phenomenon.
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Orbits of arcs in projective spaces

C. E. Gordon

Abstract

An M x N matrix is associated with each ordered k-arc in a finite
projective space of order N (k= M + N + 2.) The matrix is a projec-
tive invariant for ordered k-arcs in the space. The set of these matrices
is denoted by ). Elements of the symmetric group S; act on ordered
arcs by permuting points. This induces a definition of S; as a group
of operators on {} whose orbits correspond to projectively distinct un-
ordered k-arcs. Application of theorems of Burnside and Cauchy leads
to results concerning the number of orbits of k-arcs in PG(N,q) un-
der projectivity and under collineation. A subset of Q is defined which
contains representatives of each orbit under S;. The reduced set of
“normal” matrices is used by a counting algorithm. The results of
this paper are applied to counting the projectively distinct unordered
k-arcs (all k) in PG(2,11) and PG(2,13).

1. Introduction

This paper is concerned with the problem of counting equivalence classes of or-
dered k-arcs, unordered k-arcs, and k-gons with respect to either projectivity
or collineation. Taking into account the three types of arc and two equiva-
lence relations, there are six distinct but related problems to be solved. The
six problems can each be stated in terms of the orbits of ordered arcs under
some group of operators. The solutions, themselves, fall into two categories:
formulas for the number of orbits and algorithms for counting the orbits. The
main idea is to select a set 2 which is in one-to-one correspondence with the
projectivity classes of ordered k-arcs and then to find groups of operators on
) whose orbits are in one-to-one correspondence with the sets in which we
are interested. Burnside’s formula for counting orbits can then be applied to
these particular groups. The set 2 will be chosen so that its elements can be
easily represented in computer language and so that the groups of operations
on these representations can be easily implemented. The ideas presented here
appear in a restricted context and from a different perspective in [4] and [3].

The following notation and terminology will be used. Let p be a prime,
g = p*, and F = GF(q). A nonzero vector X in V(N +1,F) which generates
a point X of the N-dimensional projective space PG(N,F) = PG(N,q) is a
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homogeneous coordinate representation of the point. Throughout the paper,
M and N represent arbitrary positive integers and k = N + 2 + M. The sets
of ordered k-arcs, unordered k-arcs, and k-gons in PG(N, F) will be denoted
by O, U, and Ci respectively. The projectivity and the collineation groups
of PG(N,F), when treated as groups of operators on any of the sets O, Uk,
Ci. will be denoted ambiguously by PROJ and COLL respectively. Equivalence
of arcs a and S with respect to projectivity or collineation will be denoted by
a =, f and a 3 B. The existence of a bijection between sets X and Y will be
denoted by X ~ Y. The set of orbits in a set X under a group of operators
G will be denoted by X/G.

coll

2. From operators on ordered arcs to operators on
projective invariants

This section provides some development which is independent of the partic-
ular choice of the set 2, discussed in the introduction.

Definition 2.1 A complete projective invariant on O is a pair (x, ), where
{1 is a set and x is a function from O onto Q such that, for a, 8 € O, a Z, B
if and only if aX = X,

For the remainder of this section, let (x,{1) be an arbitrary complete
projective invariant for O.

Definition 2.2 A group G of operators on (J; is compatible with projective
equivalence if for any a, 8 € O and any g € G,

a = pf=a =, /.

proj proj

The function x can be viewed as a one-to-one correspondence between
Q and the set of projectivity classes in O. Thus a group of operators on O
which is compatible with projective equivalence can be viewed as a group of
operators on ). This is restated by the following.

Theorem 2.3 If G is a group of operators on O, which is compatible with
projective equivalence, and if (x, Q) is a complete projective invariant on Ok,
then the group G can be made to act as a group of operators on ) such that,
for any a € O,

o = o, (1)

The next task is to define the six groups of operators on O mentioned
in the introduction. It will be left to the reader to verify that each definition
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describes a well-defined homomorphism from the specified group into the
group of bijections on 2. The six groups are:
(1) The trivial group {e} with e fixing each ordered k-arc.
(2) The symmetric group Si with g € Si acting on an ordered k-arc to
permute its points. If g7 = h, then

(X1, ., X)) = (Xgnyoo o, Xin)

(3) The cyclic group Z; with generator, 1, acting on an ordered arc in the
same way that the cycle (1--- k) of Si does.

(4) The cyclic group Z, with generator, 1, acting on an ordered arc a to
produce a¥, where ¢ is the field automorphism: ¢ — zP. An automor-
phism acts on an ordered arc by acting coordinatewise on homogeneous
coordinate representations of its points.

(5) The direct product Z, x Si, where of®*) = (a9)".

(6) The direct product Zx X Z, where of®h = (a9)*.

Theorem 2.4 For each group G in the first row of the following table, /G
is in one-to-one correspondence with the corresponding set in the second row.

G= {e} Sk Zk Zh Zh X Sk Zh X Zk
Q/G ~ On/PROJ U,/PROJ Ci/PROJ O/COLL U/COLL Ci/COLL

Proof. For any T € PROJ and f € Zy, let T be the projectivity such that,

for a € O, ,
Tt = of 7,

Let Z, @ PROJ be the group with elements from Z, x PROJ and operation
defined by
(g’T) : (f,S) = (gf,TfS).
Now if G; is either S; or Z; and G, is either PROJ or Z, ® PROJ, then, as
operators on O, elements of G; commute with elements of G, so Gy x G,
is well defined by al9") = (a?)*. In addition, this defines G, as a group of
operators on O /G, and G, as a group of operators on O /G,. We now have
the following:
(1) Q/{e} ~ Q ~ O/PROJ.
(2) /5,
~ (Ok/PROJ)/Sk ~ Ok/(Sk X PROJ) ~ (Ok/sk)/PROJN Uk/PROJ.
(3) /2
~ (Ok/PROJ)/Zk ~ Ok/(ZkXPROJ) ~ (Ok/Zk)/PROJN Ck/PROJ.
(4) Q/Zn ~ Or/(Zn ® PROJ) ~ O/ COLL.
(5) Q/(Zy x Si) ~ Ox/(Sx x (2, ® PROJ)) ~ (Ox/Sk)/ COLL ~ U/ COLL.
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(6) Q/(Z}, X Zk) ~ Ok/(Z,, X (Zh ® PROJ)) ~ (Ok/Zk)/C’OLL ~ Ck/COLL
O

3. A complete projective invariant on ordered arcs

In this section a particular complete projective invariant (x, ) is defined and
the operations on ) associated with the five nontrivial groups of Theorem 2.4
are described. Let Uy,...,Un1 be the points with homogeneous coordinate
representations Up = (1,0,...,0),...,Ux =(0,...,0,1),Uns1 = (1,...,1).

Definition 3.1 An ordered k-arc in PG(N, F) is standard if its first N + 2
points are Uy, ...,Upn, respectively.

Given any ordered k-arc, there is a unique projectivity which maps it to
a standard ordered arc. Any point of a standard arc other than Uy, ..., Unq
has a unique affine coordinate representation (z,...,zy) that is, it has ho-
mogeneous coordinate representation (z;,...,zx,1). These facts justify the
following definition and theorem.

Definition 3.2 (a) x is the function which assigns to each ordered k-arc a
in PG(N,F) the M x N matrix [z, ;] over F, whose sthrow (1 =1,..., M) 1is
the affine coordinate representation of the (N + 2 + ¢)th point of the unique
standard ordered arc which is projectively equivalent to a. (b)  is the range
of x.

Theorem 3.3 The pair (Q,x) is a complete projective invariant for ordered
k-arcs.

The following provides a useful criteria for determining whether a given
matrix is in Q. It appears in [3] as Theorem 1.3 and also, in the context of
coding theory, as Theorem 8 on page 321 of [6].

Theorem 3.4 An M x N matrix A over F is an element of Q if and only
if an (M + 1) X (N + 1) matrix A* formed from it by adjoining a row and
column of 1’s has the property that all its minors are nonzero.

The next theorem provides a formula for o in terms of a homogeneous

coordinate representation for a. For convenience, the following notation is
introduced.
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Definition 3.5 Given any sequence 5 of k vectors from V(N + 1,F), |n| is
the determinant of the first N + 1 vectors in 5. If a permutation o € S; acts
on 7 by permuting vectors, the determinant of the first N + 1 vectors of the
result will be denoted by |no|.

Theorem 3.6 If o' is any sequence of vectors representing the points of an
ordered k-arc a, then oX is the M X N matrix [z;;], where
I l'(G N +2+5)|/|e'(j N +2)|
Y |o/(N+1 N +240)/|e/(N+1 N +2)

(2)

Proof. Let a' =(A,,..., A:). Let B be the standard ordered k-arc which is
projectively equivalent to «. Let T be the unique projectivity which maps 8
to a and let 7 be the matrix for the unique nonsingular linear transformation
which is associated with T' and which maps vector Uy, to vector Ay, 3. The
matrix 7 is found as follows. Let hy, ..., Ay4+1 be such that T maps Uy, ...,Un
to

hlAl,. . .,hN+1AN+1. (3)

Now 7T has row vectors (3). Solving equation Uy 417 = Any, for by, ..., Avya
produces

(4 N +2

hj=|a(—J|a7—|j——)|, forj=1,...,N+1. (4)

Having determined 7, we can find vectors Yj,..., Y3 such that, for + =
1,...,M,

YT = Anyoys (5)

Letting ¥; = (yi1,.-.,¥in+1) and solving (5) for ¥; we get

l&'(7 N + 2 +13)]
Yii = 7 )
hjla'|

forj=1,...,N+1. (6)
Converting to affine coordinates by setting z;; = vi;/¥in+1, we get (2). O
Remark 3.7 If M = N =1, then a is an ordered tetrad on the projective
line and aX is the familiar cross-ratio; so this projective invariant is, in some

sense, a generalized cross-ratio.

The next order of business is to investigate the action of Si on €. The following
easily verified facts will be useful.

Lemma 3.8 Let n be a sequence of k vectors from V(N + 1, F).

165



GORDON : ORBITS OF ARCS IN PROJECTIVE SPACES

(a) f1<i<N+1,1<j3j<N+1,1<m<kl1<n<k ands,j m,
and n are distinct, then |n(i 7)(m n)| = —|n(m n)|.

b)) F1<i< N+1,1<j<N+11<m<k ands, j, and m are
distinct, then |n(i 7)(2 m)| = —|n(F m)|.

() IN+2<i<kN+2<;j<kl1<m<kl1<n<k ands,j, m,
and n are distinct, then [n(i 7)(m n)| = +|n(m n)|.

(d IN+2<:<kN+2<j;<kl1<m<k, andi,j, and m are
distinct, then |n(i 7)(z m)| = +|n(7 m)|.

If @ and o' are as above and g € S, then, by Theorem 3.6, a® = [y; ;],

where
lo'g(7 N +2+3)l/|a'g(5 N +2)| )
la’g(N+1 N +2+1)|/|la’g(N +1 N +2)|
In order to make the notation of this paper consistent with that of
earlier papers [3] and [4], rename the symbols 1,...,k on which S acts as
€1,...,CN,Co,To,T1,--.,TM respectively.

Yij =

Definition 3.9 (a) R; = (ro 7i), (forz = 1,...,M). (b) C; = (¢ ¢;), (for
j = 1,...,N). (C) J = (1‘0 Co).

Sk is generated by transpositions R,,..., Ry, Cy,...,Cx,J. The ac-
tions of these operators on ) are described in the next theorem.

Theorem 3.10 Let A = [z;;] be an element of ). Let n = 1,...,N and
m=1,...,M.
(a) AR~ =ly;;], where ym; =1/, ; and, if i # m, then yi; = @i ;/Tm,;
(b) A" = [yi;], where ym; = 1/zm; and, ifi #m, ¥ij = Ti;/Tm ;-
(C) AJ = [y.-,j] where Yijs = 1-— Ti5.

Proof. Pick o', a homogeneous coordinate representation for some ordered
arc a such that X = A. By (1), A9 = o%. For part (a),let g= (N +2 N +
2 4 m) in equation (7). Using Lemma 3.8 to simplify yields

lo'(s N+2+49)|/|a"ls N+24m)| =iy

[(N+1 N+2+i)|/|a{N+1 N424m)| — oms’ 8)
oG N42) /|G Na2bm)| g

[a(N+1 N+2)|/|a!(N+1 N424m)| ~ T’

i;ém=> Yij =

ymlj =
Part (b) is similar to part (a). Part (c) is more difficult. Let g = (N+1 N +2).

In this case, Lemma 3.8 and equation (7) give

(N +1N+2)G N+2+5)|/ - |o'(G N +2)
Yid /(N +1 N +2+1)[/]e] '

(9)
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It is required to show that z;; + yi; = 1. Using equations (2) and (9), this
condition becomes

lo||/(N +1N+2)(3 N+2+3)|—|a'(F N+2+1)|a'(N+1N+2)
+|(N+1N+24+3)|e'(F N+2)=0
(10)

Let the vectors in positions 5, N+ 1, N+ 2, and N4+ 24 : in &' be
A, B, C, and D respectively and the first N + 1 vectors of o', other than A
and B be Hy,..., Hy_,. For notational convenience, perform identical row
permutations on all the determinants involved in (10) to move vectors in
positions 7 and N + 1 to positions 1 and 2. The equation then becomes

A D D A A C
B C B C D B

H, H (- H H {+| H H (=0 (11)
Hy_ 1| |Hy Hy 1 || Hy Hy_ ;1 ||Hyo

To verify this determinant identity, let @ be the (2N +2) x (2N + 2) matrix
shown in (12). Then Q’ is obtained from Q by elementary row and column
operations. Since every (N + 1) x (N + 1) minor in the last N +1 columns of
@’ has value 0, a Laplace expansion along those rows produces a determinant
of 0. Hence the determinant of @ is 0.

[ A A [ A 0 7
B B B 0
c c c 0
D D D 0
H, 0 , H, 0

@=1 : d=1 (12)

Hy_, 0 Hy_, 0
0 H, 0 H,

L 0 HN-]_ L 0 HN—I_

Now consider a Laplace expansion of @ along its first N + 1 columns. If an
(N +1x N+ 1) minor in the first N rows is nonzero and its complementary
minor is also nonzero, then the minor and its complement must each contain
rows Hy,..., Hy_,, as well as two of the first four rows. The Laplace expansion
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for |@| produces

A C A B A B
B D C D D C

2 H, H |-| H H |+] H H, . (13)

Hy_ 1 11Hya Hy_ 1 |1 Hy Hy_111Hya

Since |Q| = 0, equation (11) follows. O
Corollary 3.11 A permutation of the symbols ¢;,...,cy acts as a column
permutation on a matrix in ) while a permutation of the symbols ry,..., 7y

is a row permutation.

Proof. It is sufficient to consider transpositions. For distinct 21 and 42 in
L,...,M, (ria r2) = Ry R R, Tt follows from Theorem 3.10(a) that this
acts on a matrix A € ) to permute rows 1 and 2. Similarly (c;; ¢;2) permutes
columns j1 and ;2. o

Theorem 3.10 associates with each permutation in Sy a certain bijec-
tion on 2. This association is a homomorphism but not necessarily an iso-
morphism. In particular, it is well known that if M = N = 1, then the 4!
permutations of an ordered tetrad correspond to only 3! distinct operations
on cross-ratios. This is however an exceptional case, arising because when
k =4, S has an “extra” normal subgroup. The general situation is described
in the next theorem.

Theorem 3.12 Assume that ) # 0. Let T' be the group of bijections on §
associated with elements of S.

(a) If|F| >5and k > 5 then T = ;.

(b) If|F| > 5 and k =4, then T = S,.

(c) H|F| =4, thenT = S,.

(d) If |[F| =3, thenT' = S,.

Proof. The group T' is a homomorphic image of Si. If £ # 4, the only
possible homomorphic images of Sj are (up to isomorphism) Sy, S;, and Sk.
If k = 4 then, in addition to these, S3 is possible.

If |[F| = 3, then |2] =1 and |I'| = 1 so ' & §,. If | F| = 4, then |Q| =2
and | =2s0 T = S, If |F| >5and k=4,then M =N =1 and R, = Cjy;
but I (the identity element of Si), J, and R; are distinct; so I' = S;. Assume
the hypothesis of part (a). If M > 3, then I,(¢; ¢;), and (c; ¢3) are distinct;
so I' 2 S;. Similarly,if N > 3, then I' = S5;. T M = N = 2, then I # J,
I#C,,I#R,,and C) # Rj;50 || >3and T = 5. f M =1and N =2,
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then I, J, and R; are distinct so I' = S;. Similarly, if N = 1 and M = 2,
then I' @ S;. ]
So far this section has only dealt with Si, the most interesting of the
six groups described in Section 1. Z is essentially the automorphism group
on F. An automorphism g acts on an element [z; ;] of Q to produce [z{;]. The
group Zj is isomorphic to the subgroup of Si generated by the k-cycle

(L ... k)=(ro rm)(ro co)(coen)(er ... en)(ry ... Ty).

This acts by applying Ras JC'y followed by cyclic permutations of the columns
and rows. For example, if M = N = 3, then

4 i,g21 i Al

a b ¢ A
, | 4 1,g=a i h=b

d e f t-c g i1—-c h 1i-c
g h i A i,9=d i h-e
i-f g i-f Rk i=f

The action of each of the two direct products groups is determined by the
action of its component groups.

If one is willing to restrict attention to those (unordered) k-arcs extend-
ing a fixed (N + 2)-arc, one can view an element of Q as a representation for
an arc and one can view a “projectivity” on arcs as a member of the group
I’ generated by the operations of Theorem 3.10. This is valid in the sense
that two of these arcs are projectively equivalent if and only if some group
element maps one to the other. However, if one projectivity maps a pair of
arcs to another pair, it may require two different elements of I" to effect the
same result. The “collineations” of this theory are much like the collineations
of PG(N,F), in that each is a product of operation from S; with an opera-
tion from Z;. A difference however is that each member of S, commutes with
each member of Z, so that the group is a direct product. Projectivities do
not commute with field automorphisms.

4. Duality

Given k = M +2+ N, let Q(M, N, F) denote the set  of Definition 3.2. From
Theorem 3.4, an M x N matrix A isin Q(M, N, F) if and only if its transpose
AT is in Q(N, M, F). The symmetric group on symbols rq,...,Tu, Co, . .. CnN,
as the group of operators on (M, N,F) generated by Ry,..., R, Ch,
..., Cn,J, i1s isomorphic to the symmetric group on symbols cy,...,
CM,To,...TN, as the group of operators on Q(N,M,F) generated by
Cy,...,Cp,Ry,...,Ry,J. This provides a one-to-one correspondence be-
tween each of the six sets of orbits (U / PROJ, O/ PROJ, Ci / PROJ, U/ COLL,
Ow/COLL, and Ci/COLL) in PG(N, F) and the corresponding set of orbits in
PG(M,F).

169



GORDON : ORBITS OF ARCS IN PROJECTIVE SPACES

Leo Storme has pointed out that, in regard to U/ PROJ, this is the same
one-to-one correspondence provided by the “duality” relationship of [8] and

7).
5. Formulas for numbers of orbits

The number of orbits of ordered k-arcs under projectivity is the cardinality of
€. This is the same as the total number of k-arcs extending a given (N + 2)-
arc. For k < 8 this value can be derived from formulas presented in [2].

A well known result of Burnside gives a nice formula for the number of
orbits in a set which is acted upon by a group of operators. This formula is in
terms of the number of elements of the set which are fixed by each element of
the group. The essence of this result can be found in Theorem VII, Chapter X
of [1]. A variant of Burnside’s result (Theorem 5.1) utilizes the fact that if two
elements of a group are conjugates then there is a one-to-one correspondence
between their sets of fixed points.

Theorem 5.1 (Burnside)If G is a group of operators on a set X and S is
a subset of G which contains ezactly one element from each conjugacy class
of G, then the number of orbits in X is

2g€s Fix, - Conjg
G,
where Fix, is the number of elements of X fized by g and Conj, is the number
of conjugates of g in G.

Two elements of a symmetric group are conjugates if and only if they
have the same cycle structure ([5], p.173). A formula for the number of con-
jugates of a given permutation is provided by Cauchy ([5], p.73). In this
formula, each element g of the symmetric group Sk is to be thought of as
a product of disjoint cycles, including cycles of length 1. For example, the
identity permutation just consists of k-cycles of length 1.

Definition 5.2 For each element g of Si,

k

A, =TI (Ag(i)- iAn(‘))’

=1
where Ay(2) is the number of cycles of length 2 in g.
Theorem 5.3 (Cauchy) The number of conjugates of an element g of S is
gwen by;

k!

Conj, = —.

AQ
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Definition 5.4 (a) For each g € S and each t € Z, ®(t, g) is the number of
elements A of Q such that A* = A%. (b) F, = &(0,g) (c) H, = +- 73 &(t,9)

Theorem 5.5 Let S be any subset of S; containing exactly one element from
each conjugacy class. The numbers of orbits of k-arcs under projectivity and
under collineation in PG(N, F) are, respectively,

Fy

EE and ZA'

ges g€eS

Proof. The orbits referred to in the theorem are in one-to-one correspon-
dence with the orbits in  under the Si and Zx x Si. The result follows easily
from Theorems 5.1 and 5.3 and the fact that, if S is any subset of Sx which
contains exactly one representative from each conjugacy class, then, since Z
is commutative, Z, X § contains exactly one representative of each conjugacy
class in Zp x Sg.

6. Normalization

In this section, a set of “normal” matrices from  is considered along with
a set of representatives of the left cosets of a certain subgroup II of Si. This
reduced set of matrices and reduced set of operations have application in
algorithms for counting orbits.

Definition 6.1 (a) pi;2 = (i Ti2) and ki = (Cin ¢i2), where i1 and 22
are distinct elements of {1,..., M} and 51 and 52 are distinct elements of
{1,...,N}. (b) Il is the subgroup of S generated by all p;14; and k;1 s

Let I be the identity element of Si. The following lemmas are easily
verified. Parts (a), (b), (c), and (d) of Lemma 6.2 say that in considering
products of generators, one can assume that blocks involving just R’s and
C’s are of the form R;C;. The remaining parts of 6.2 show how elements of
IT migrate to the right in products. Lemma 6.3 says that in a product of the
form R; Cj JR;;CjpJ, one can assume that 1 < 12 and j1 < 52.

Lemma 6.2 Let 1,:1,12 be in the range 1,...,M and let j,71,52 be in the

range l,..., N.
(8) RRRi = C,C; = JT = I, (b) C;R; = RiC;,
(c) RaRi; = Rizpiria, (d) Cs1Cj2 = Cjarj ja,
(¢) JR:J = R.JR; (f) JC;J = C;IC;
(8) piried = Jpiria, (h) &j1,52d = TKj1 52,
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(1) pir,22C; = Cjpiria, () xj1,52Ri = Rikjija,
(k)i ¢ {11,12} = (1) j¢ {1,752 =

piri2Ri = Ripi iz, #31,:2C;5 = Cjkj g2,
(m)pi1 2 Rin = Rizpit sz, (n) £j1,;2C5n = Cjaks z2

Lemma 6.3 Let 4,71,72 be in the range 1,..., M and let 7,51,52 be in the
rangel,...,N.

(a) R,.J.R,.CJJ = JRCJJCJ

(b) 21 7’5 12 —> R.zJR]CJJ = R]J.mijJijﬂ'.‘z.

(C) CJJRCJJ = JRCJJR

(d)_]l #j2 = CszR{Cj]J = Cj]JR,‘ngJR,,‘I{jl,jz.

Let Ry = Co = I and consider products of the following forms. Form 0
consists of all products R;C; with « € {0,...,M} and j € {0,...,N}.
Form 1 consists of products R;C;JR;C; with 1,2 € {0,...,M} and
71,7 €{0,...,N}. Form 2 consists of products
R,CHJR,C,HnJR,C;

with
0<il<i2<M, 0<jl<j2<N, i€{0,...,M}andje€{0,...,N}.
For t > 2, form t consists of products

R Cpd- - JRCyJR.C;

with
0<il<---<1it<M, 0<jl<---<jt<N,
ie€{0,...,M} and j€{0,...,N}

Lemma 6.4 Let L be the minimum of M and N. Then the total number of
products of forms 0,...,1 is [S; : IIJ.

Proof. There are no products of form ¢, for ¢t > L. For t = 1,..., L, the
number of products of that form is

(M+1)(N+1)<M+1> <N+1>.

t i
Equation (14) is a well known identity (see, for example identity 10, page 207

of [11].) ,
B-E007) 9
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The result follows by letting r = M + 1 in (14) and multiplying by
(M +1)(N +1). o

Theorem 6.5 Let L be the minimum of M and N. Then each left coset of
IT contains one and only one representative element of one of forms 0,..., L.

Proof. Let g € Si. Applying Lemmas 6.2 and 6.3, one can find an element
of gII of one of the desired forms. By Lemma 6.4, there cannot be more than
one, a

Now suppose that a linear ordering has been imposed on the elements of
F. Extend this ordering lexicographically to affine coordinate representations
of points and then to elements of Q. For each A € Q(M, N, F), let A* be
the member of Q(M — 1, N, F) obtained from A by eliminating the last row.
Notice that if A and B are members of Q(M, N, F) with last rows a and b
respectively, then

A<B<<=> A*"<B*or (A*=B"and a <}). (15)

Lemma 6.6 Assume that M > 1. If G is any of the four groups of operators
on Q(M, N, F) from Theorem 2.4 associated with Oy and Uy, (but not Ci) and
G* is the corresponding group of operators on (M — 1, N, F), then G* can
be embedded in G in such a way that, for any A € (M, N,F) and g € G*,

A% = A%, (16)

Proof. If @G is trivial then so is G*. If G = S, then G* = S;_,. Also G*
is generated by R;,...,Rap—1, C1,...,Cn,J. It is easy to verify that if ¢
is any of these generators, then ¢ satisfies (16). If G = Z,, then G and Gx
are both essentially the group of field automorphisms, acting coordinatewise
on matrices of (M, N, F) and Q(M — 1, N, F) respectively. Equation (16)
is immediate. It is also immediate that since S; and Z, have the desired
property, then so must Z, x Sk. O

Theorem 6.7 Assume that M > 1. Let G and G* be as in Lemma 6.6. If
A € Q(M, N, F) is the least element of its orbit under G, then A* is the least
element of its orbit under G*

Proof. Suppose that A is the least element of its orbit under G but A* is
not the least element of its orbit under G*. Pick g € G* such that A*? < A*.
By (16), A%* < A* so by (15), A? < A. This is a contradiction. The situation
when N < M is symmetric. a
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Definition 6.8 (a) Norm is the operator which maps each A € 1 to the least
element of its orbit under II. (b) A matrix A € § is Normal if ANorm = 4.

From each of the operators g of forms 0,..., L (L the minimum of M,
N) produce a new operator gNorm by following ¢ by normalization. Given
a normal matrix A € §, application of these k! /(M! N!) operators produces
all the normal matrices in the orbit of A under Si.

Considering unordered arcs in PG(2,11) and PG(2,13) and using a
computer program to separate the normal elements of {2 by orbit, one obtains
the results below.

PG(2,11)

k|5 6 7 8 9 10 11 12

k-arcs {2 15 21 21 5 2 1 1

Complete k-arecs |0 0 1 9 3 1 0 1
PG(2,13)

k15 6 7 8 9 10 11 12 13 14

k-arcs |3 26 80 181 110 27 2 2 1 1

Complete k-arcs [0 0 0 2 30 21 0 1 0 1

Numbers of Projectively Distinct Arcs
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There exists no (76,21,2,7) strongly
regular graph

W. H. Haemers

Abstract

It is shown that a strongly regular graph with parameters (v, k, A, u) =
(76,21,2,7) cannot exist.

Let T be a strongly regular graph with parameters (v, k, A, p) = (76,21,2,7).
Then T is pseudo geometric to a generalized quadrangle of order (3,6). It was
proved by Dixmier and Zara [1] (see also Payne and Thas [2]) that such a
generalized quadrangle does not exist. In this note we show in a short and
elementary way that I' has to be geometric, and therefore cannot exist.

Lemma 1 The neighbourhood T'; of a vertex ¢ of I' consists of a disjoint
union of cycles with sizes divisible by 3.

Proof. A = 2 implies that T is the disjoint union of cycles. Let C be such a
cycle with c vertices. Let ¢; denote the number of vertices at distance 2 from z,
adjacent to precisely i vertices of C. Then 35 =v—k—1 =54, 3{_qic;i =
o(k—1—X) = 18cand 5o i(p—1)c; = Yio i(7T—1)c = 6¢(k—c) = 6(21c—c?).
The last identity follows by counting the paths of length 2 between C and the
other vertices of I';. By use of these formulas we obtain ¥°{_o(i — £)%¢; = 0.
Therefore 3 = ¢.

Lemma 2 Let S denote the complete graph on 4 vertices from which one
edge is deleted. Then S is not an induced subgraph of T.

Proof. Suppose S is a subgraph of I'. Let S; denote the set of vertices outside
S adjacent to precisely i points of S. Clearly Sy = §) (since A = 2). By Lemma
1, T has no subgraph isomorphic to W; , the wheel on 5 vertices, hence also
S3 = 0. Now we easily have |S5| = 4(A — 1)+ (A —2) + (. — 2) = 9. Moreover,
|S1] +2|Sa| + 10 = 4k = 84 yields |S)| = 56, so |Sp| = 7. Let s; denote the
number of edges between S; and S;. Counting paths of length 2 between S
and Sp gives 8; + 23, = 28y = 196. Clearly 230 + 8, + 82 = Tk = 147. Hence
sy = 49 + 250 and s; = 98 — 4s. Let p; denote the number of paths of length
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2 between distinct vertices of Sy via a vertex of S;. Then
Po + P1 + P2 = Aso + p(21 — so) = 147 — 5so. (1)

From s, = 98 — 45, and |S;| = 56 it follows that p; > 42 — 43 (indeed, p
is minimal if the numbers of neighbours in S, of points of S, are as equal as
possible). Similarly, s; > 49 and |S,| = 9 imply p; > 5 X (g) +4 x (g) = 110.
So p1 + p2 > 152 — 450, contradicting equation (1).

Theorem There exists no (76,21,2,7) strongly regular graph.

Proof. By Lemma 2, the two common neighbours of two adjacent points of
I’ are always adjacent. So every edge is in a unique 4-clique. This implies that
the vertices and the 4-cliques of I' form a generalized quadrangle of order
(3,6). So, by the result of Dixmier and Zara the assertion follows.
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Group-arcs of primme power order on
cubic curves

J. W. P. Hirschfeld J. F. Voloch

Abstract

This article continues the characterization of elliptic curves among sets
in a finite plane which are met by lines in at most three points. The
case treated here is that of sets of prime-power cardinality.

1. Notation
GF(q) the finite field of ¢ elements
PG(2,q) the projective plane over GF(q)
PGW)(2,q) the set of lines in PG(2,q)

P(X) the point of PG(2, q) with coordinate vector X
PQ the line joining the points P and @

€PQ)  PQ

(P) the group generated by P.

2. Introduction

This article continues the work of [5] in considering sufficient conditions for a

set of points in a finite plane to be embedded in a cubic curve. Similar results

to those in [5] were obtained independently by Ghinelli, Melone and Ott [1].
For completeness the main results in [5] need to be summarized.

Definition 2.1 A (k;n)-arc in PG(2,q) is a set of k points with at most n
points on any line of the plane.

The fundamental problem is to decide when a (k;n)-arc K, lies on an
absolutely irreducible algebraic curve C, of degree n. Here we consider the
problem for n = 3.

A crucial point is the number of points K3 contains and the number of
rational points on C3. Let m3(2, q¢) be the maximum number of points on Kj.
Then

m3(2,q9) <2¢+1forg>3, €))]
[10], [2, p-331], and the exact values known are given in Table 1.
For g=11,29—1<m3(2,q) <2¢+ 1.
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g | 2,3 |457] 809
m3(2,9) |29 +32¢+1 291

Table 1. Values for m3(2, q)

For an elliptic curve, N,(1) is the maximum number of points it can
contain. Its value, for ¢ = p* with p prime, is

Ny =1{1 + [2v/4] when h is odd, & > 3 and p|[2+/4]
471 g+ 1+ [2/q] otherwise,

where [t] denotes the integer part of ¢, [12], [3, p. 273]. The precise values that
are achieved by the number of points of an elliptic curve over GF(gq) are also
known [12], as well as the number of isomorphism classes and the number of
plane projective equivalence classes for a given value, [9]. For such a value the

possible structures of the abelian group the points form is also known, (8],
[11].

3. Axioms

Now, we recall the axioms imposed on a (k; 3)-arc in [5], and then solve the
main case unresolved there. For further motivation and details concerning the
axioms, see [5, section 2].

Let K be a (k; 3)-arc in PG(2, q). Four axioms (E1) - (E4) are required.
For each axiom, the property that it gives to K is mentioned in parentheses.
(E1) There exists O in K such that £nN K = {0} for some line £.
(INFLEXION)
(E2) There exists an injective map 7 : K\{0} — PG(1(2,q) such that
P € Pt and |[PTNK| <2, for all P € K\{O}. (TANGENT)
(E3) If P,Q € K and PQ # Pt or Qr, then |PQ N K| = 3.
(FEW BISECANTS)
(E4) For P € K, define P to be the third point of K on OP. For P,Q € K,
define P + Q = R, where R is the third point of X on PQ. Now, let K
be an abelian group under the operation + with identity O and —P = P.
(ABELIAN GROUP)

Definition 3.1 A (k;3)-arc K satisfying (E1) - (E4) is called a group-arc or
k-group-arc.

It follows from the axioms that
(a) any subgroup of a group-arc is a group-arc,
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(b) P+ Q@+ R =0 if and only if P,Q, R are collinear.

Definition 3.2 In PG(2,q), the point set S is linearly determined by the set
T of points and lines if every point of S is the intersection of two lines each
of which is in T or is the join of two points of T or is the join of two points
iteratively determined in this way.

Lemma 3.3 If P is a point of an arbitrary group-arc, then the cyclic group
(P) is linearly determined by {O,+P,+2P,3P,(—2P)7}.

Lemma 3.4 Let P be a point of order at least six of a group-arc. Then (P)
is a subgroup of a unique cubic curve with inflexion O.

Lemma 3.5 Let &, and & be cubic curves and K a k-group-arc which is a
subgroup of both & and &,. If k > 5, then &, = &,.

Lemma 3.6 Let X be a group-arc contained in a cubic curve £ such that
any cyclic subgroup of K is a subgroup of £. Then K is a subgroup of £.

Theorem 3.7 Let K be a k-group-arc in PG(2,q) such that one of the fol-
lowing hold:

(a) k = p1par where p, and p, are distinct primes > 7;

(b) k = 2°3°5°p?, where p, is a prime > 7, d > 1 and 2°3%5° > 6.

Then K is a subgroup of the group of non-singular points of a cubic curve.

The theorem leaves the following values of k to be considered:
(i) k = 2°3%5¢, with a,b,c > 0; (ii) k = ep? , with p; prime > 7,d > 1,1 <
e <5,

In the next section we consider case (ii).
4. The main theorem

Lemma 4.1 Suppose P,Q are elements of a group-arc K both of prime or-
der p; # 2,3 generating a subgroup G of order (p,)?. Then G is uniquely
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determined by
0,+P,+Q,P +Q,2P.
Proof. First,

-P-Q
-P4+Q

{P,Q)N¢O0,P +Q),
{(P,—Q)NLO,P - Q).

It

Il

Now assume, by induction on m < p; — 1, that we know
+(iP + Q), xiP

for + = 0,...,m. This is true for = 1. Now we determine these points for
t =m + 1 as follows:

—(m+1)P-Q = {PmP+Q)NL2P, (m —1)P+Q),
(m+1)P+Q = &—P,—mP —Q)N4O0,—(m +1)P - Q),
(m + l)P e("P: —mP) ﬂZ(Q, _(m + l)P - Q))
—(m+1)P = YP,mP)n{O,(m+1)P).

The last equality works providing the two lines are distinct; that is, providing
(m+ 1)P # O or (2m + 2)P # O. However, the first is true since otherwise
the induction would have been finished at the previous step.

In particular, (P) has been determined. Now (P,), where P, = P + Q,
is found. From the previous step,

O1i'Pl1i'Q1P1i'Q)2Pl

are required. Of these, the only ones lacking are P; + @ and 2P,. These are
determined as follows:

Pi+Q = P+2Q
2P, = 2P +2Q

(~2P —Q,—Q)N4(~3P — @, P — Q).

Now, with P, instead of P, we can determine (P,), where P, = P, + Q =
P + 2Q. Continuing this process, (P + mQ) for m = 0,1,...,p1 — 1 can be
determined. To complete the proof, only (Q) needs to be found. By reversing
the initial roles of P and @, we require

I

I

O,+P,+Q,Q + P,2Q.
Of these, only 2Q is missing; this is given by
2Q = {P,—P —2Q)Nn¥4(—P,P —2Q).
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Corollary 4.2 A group-arc K isomorphic to (Z,, )?,p1 > 5, is a subgroup of
a unique cubic curve.

Proof. Given O,+P,+Q,P + Q,2P, where KX = (P) @ (Q), the conditions
that a cubic passes through these points and has an inflexion at O are nine
independent conditions and determine the cubic uniquely. o

Theorem 4.3 Let K be a k-group-arc in PG(2, q) such that k is divisible by
a prime p; > 7. Then K is a subgroup of a unique cubic curve.

Proof. By Theorem 3.7, it suffices to consider the case that k¥ = ep? with
1<e<5b.

Consider first the case that the p;-Sylow subgroup P; of K is cyclic so
that P, = (P,). Now, K = P, ® G, where |G| = e and |P1| = p?. As P, is
cyclic it is contained in a cubic curve &;. For any point P in P, the subgroup
(P) is contained in a cubic curve £, which coincides with £ by Lemma 3.5.
If @ is any point of K, then @ = P + R for some P € P, and R € G. By
Lemma 3.4, (Q) is contained in an cubic curve £'; also, since the orders of P
and R are coprime, (Q) contains both (P) and (R). Again, by Lemma 3.5,
E' =E,. Hence K C &;.

Now consider the non-cyclic case and let X, C K with K; isomorphic
to (Z,, )?. Then, by the previous corollary, K, is contained in a cubic £. As in
the previous case, K = Ko @ G where |G| = e and |Ko| = p?. If P in Ko\K,
has order p}, then (P) is contained in a cubic £ and, for @ € K;\{0}, the
sum (p} ' P) @ (Q) is contained in a cubic £”. Now £" N £ D (Q), whence
£" = £ by Lemma 3.5. Also, £'NE" D (p} ' P) and so &' = £". Hence £ = £’
and therefore X, C €.

Now, let R € G. Then there is a cubic £" containing (R + Q). As
e(R+Q)=eQ € £and eQ # O, so (eQ) = (Q) and E'NE D (Q) . Therefore
E" = € by Lemma 3.5 and (R + Q) C £, whence p1(R+ Q) = p1R € €. So
R € £. It has now been shown that both G and K; lie in £, whence K C €.

a

5. Small cases
I.k=2S8

Lemma 5.1 An 8-group-arc K isomorphic to Z, X Z, x Z, exists in PG(2, q)
if and only if ¢ = 2%, h > 3. Such a group-arc lies on a unique cuspidal cubic.
Proof. Let O = P(1,0,0),P = P(0,1,0),Q = P(0,0,1),R = P(1,1,1) be
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points of K. Then
R+Q = P(t,t1),t#0,1;
P+R = P(1,s,1),s # 1.

Also

P+Q
P+Q+R

UP,Q)N{Q+R,P+R) = P(0,t—ts,1—t)
{P+R,Q)NLP,Q+R) P(1,s,t71).

Now, P+ Q+ R€e{P+Q,R)=>

1 1 1
0 t—ts 1—¢t =0
1 s t

>l—s+l—-t—(t—ts)—s(l—-t)=0
=>2(1-s)(1-t)=0
=2 =0.

Since O is on none of the lines
YQ,P+R),{(R+Q,P+R),{(P+Q,P+Q+R),

it follows that s # 0,5 # t,s # ¢t~!; hence q > 4. Also the 7 points of K\ {0}
form a PG(2,2). The 8 points lie on the unique cubic C with equation

(s 4+ Dzy + st + D2z + (t + )y*z + t(s + 1)yz* = 0.

This is irreducible when (s + t)(st + 1) # 0, which is satisfied in this case. It
has a cusp at P(\/t_, V'st, 1) and all tangents to C are concurrent at O.
a

For more on cuspidal cubics, see [2, section 11.3].

Lemma 5.2 An 8-group-arc K isomorphic to Z, x Z, exists in PG(2,q) if
and only if q is odd with ¢ > 5. Such a group-arc lies on a unique cubic curve,
which is elliptic.

Proof. The eight points of K written as elements of Z, x Z, are

0=(0,0, Pi=(0,2), P=(1,0), Ps={(L,2),
Q1= (011)1 Q: = (0’3)1 Qs = (11 1)1 Qs = (1’3)'

Hence
2P, =2P,=2P;=0, P+ P+ P3=0, 2Q, =2Q,=2Q3 =2Q4 = P,.
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So Py, P,, P; are the points of contact of the tangents through O, and @, @3, @3, Q4
the points of contact of the tangents through P;.

Let O = P(0,0,1) with tangent y = 0. Let P, = P(0,1,0),P, =
P(1,1,1),P; = P(a,l,a) with respective tangents z = 0,z = y,z = ay;
so a # 0,1. Then, if K lies on the cubic curve £, consider the intersection
divisors in which € meets the two curves with equations

y(z —z)*=0and z(z ~ y)(z —ay) = 0.
In both cases the divisor is
OG0 06PAOPGP,OP, 0P P,

where @ has been used to denote the formal sum to distinguish it from the
sum on a cubic curve elsewhere in this paper. So £ has equation

y(z — 2)* + dz(z — y)(z — ay) = 0. (2)
The common points of a line z = tz through P, and C are determined by
(1 =tz + dz(z — y)(z ~ ay) = O; (3)
that is, apart from P, , the points defined by
Az? +zy{(1 - t)* = A1 + @)} + day® = 0. (4)

Since there are four tangents through P; , so ¢ is odd. For a tangent, the
discriminant A = 0. Here

A={1-t)P-21+2)}P -4V a=(1-t) -2 (1+a)(1-t)* + X2 (1 - o).

Since A = 0 has four solutions for ¢, so the discriminant A’ of A considered
as a quadratic in (1 — ¢)? is a square. Now,

A" = (1 + a)® - A1 — a)?4) e

Hence o = (% this incidentally means that GF(g) contains a square other
than 0 and 1, whence ¢ # 3. Solving A = 0 for (1 — ¢)? gives

(1=t =21+6>)+228 =21 £6)

Hence A = 42 . Thus
1—t=4y(1£8).

Therefore, (4) becomes (z & By)? = 0. This gives for Q;, @2, @3, @4 the points
P(eB,1,eB+ fBy — ef %)
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where e, f = £1. Also C has equation

y(z — 2)’ + vY’z(z — y)(z — B%) =0,

which is elliptic. o
For the calculation of the equations of cubic curves with a precise num-
ber of points, see also [4], [6], [7].

II. k = 25

Each case not covered in this paper can be reduced to a finite calcula-
tion. An arbitrary group-arc K of a given order is given by a set of points,
where some of the coordinates are elements of GF(q) and some are indetermi-
nates. The necessary collinearities are given by a set of polynomial equations
in the indeterminates. An algebraic manipulation programme can then de-
termine the consistency of these equations, and check whether or not X lies
on a cubic curve. For example, A. Simis (personal communication) has ver-
ified that if X is isomorphic to (Z5)? , then this works, as one expects from
Corollary 4.2.
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Planar Singer groups with even order
multiplier groups

C.Y. Ho*

Abstract

We completely determine the subgroups, which also are subplanes,
of a Singer group of planar order 81. We prove that each subgroup
of a Singer group is invariant under the involution of the multiplier
group, except possibly if the Singer group is non abelian of planar
order 16. If the subgroup is a subplane of non square order, then this
subplane is centralized by the involution of the multiplier group. We
study v(n) = v(z)v(y)v(z) from a geometrical point of view, where n
is the order of a projective plane and v(r) = r* + r + 1 for any r.

1. Introduction

A Singer group of a projective plane is a collineation group acting regularly
on the points of the plane. In 1938, Singer proved that a finite Desarguesian
plane admits a cyclic Singer group. On the other hand, in 1964, Karzel proved
that a plane admitting an infinite cyclic Singer group is not Desarguesian.
Projective planes and Singer groups in this article are of finite cardinalities.
An automorphism of a Singer group is a multiplier if it is also a collineation
when we identify the points of the plane with the elements of the group. The
set of all multipliers is called the multiplier group of the Singer group. The
importance of the multiplier group can be seen from Ott’s result [12]that a
plane admitting a cyclic Singer group is Desarguesian or its full collineation
group is a semi-direct product of a cyclic Singer group with its multiplier
group.

The planar order of a Singer group is defined to be the order of the
projective plane in which this Singer group acts on. Up to isomorphism, a
cyclic Singer group and its multiplier group are uniquely determined by the
planar order of the Singer group. In general, two Singer groups of the same
planar order might not be isomorphic to each other and their multiplier groups
might have different orders. For example, the multiplier group of a nonabelian
Singer group of planar order 4 has order 3, but the multiplier group of an
abelian Singer group of planar order 4 has order 6.

*. Partially supported by a grant from NSA.
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For an abelian Singer group, Hall (2.3 below) proved that any divisor
of its planar order yields a multiplier. The lack of such existence theorems for
multipliers of nonabelian Singer groups explains the difficulty of studying the
general case.

As in group theory, Sylow 2-subgroups (especially, the involutions) of
the multiplier group play a special role. We know that a Sylow 2-subgroup T
of the multiplier group of a Singer group is cyclic (2.1 below). In a forthcoming
paper we will prove that T is a direct factor of the multiplier group [5]. In
(7], we completely determine the structure of an abelian Singer group when
T is maximally permitted in the sense that its index in a Sylow 2-subgroup
of Aut(S) is 2. In this article we are interested in the case |T| # 1.

A geometrical structure can be given to the elements of a group of order
73 (respectively, 13 and 7) so that it becomes a Singer group of planar order
8 (respectively, 3 and 2). When these three groups are embedded, as abstract
subgroups, in a Singer group S of planar order 81, we prove that only the
structure of a plane of order 3 is compatible with S. Observe that Bruck’s
conditions (2.2 below): 82 + 8 = 72 < 81 and 2% + 2 = 6 < 81 are satisfied
by possible group subplanes of order 8 and 2, where a group subplane of a
Singer group is a subplane which is also a subgroup. Note that a subplane
need not be a subgroup (e.g., the subplane of order 2 in a cyclic plane of order
8), and a subgroup need not be a subplane (e.g., the subgroup of order 7 in a
cyclic Singer group of planar order 9). However, group subplanes seem to be
important in the study of Singer groups. The following completely determines
the group subplanes of a Singer group of planar order 81.

Theorem 1.1 The group subplanes of a Singer group of planar order 81 are
subgroups of order 13,7 - 13 and 7- 13 - 73, whose planar orders are 3, 9 and
81 respectively.

Suppose the multiplier group M = M(S) has even order. Let « be the involu-
tion of M. If § is cyclic, then each subgroup of S is a-invariant. The following
generalizes this and provides information about group subplanes.

Theorem 1.2 Suppose the multiplier group M(S) of a Singer group S has
even order. Then the following conclusions hold.

1. Each subgroup of S is a-invariant except possibly when n = 16 and S
is non-abelian.

2. A group subplane not in the Baer subplane Cg(a) must have square
planar order.

For any positive integer 7, let v(r) = r? + r + 1. As v(6) dividing v(3%8) ,
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it is possible that v(pg) divides v(p*) for two distinct primes p and g. The
fact that v(2) does not divide v(8) shows that the condition z|y is not a
sufficient condition for v(z)|v(y). From v(2)v(11) = v(30), we see that v(z) =
v(y)v(z) does not imply z = y? or z = 2z%. (The fact that v(2)|v(11) and
v(1)|v(10) shows that the conditions v(z)|v(y) and v(z — 1)|v(y — 1) are not
sufficient conditions for inferring z%|y? or z|y.) Since v(n) is the number of
points of a projective plane of order n, one expects that the factorization
v(n) = v(a)v(d) has some geometrical meaning. In Theorem 2.4 of [8], we
prove that if maz{a, b} = m is the order of a proper subplane, then n = m?2.
For a Singer group of planar order n such that v(n) = v(a)v(b), the number
i(a, b) of elements of {a, b} which are orders of group subplanes can be 0 or 1
as the example v(16) = v(1)v(9) = v(3)v(4) shows.

Using Hall’s multiplier theorem we see that M(S) has even order for an
abelian Singer group S if and only if n is a square. For an abelian Singer group
of planar order n, i(a,b) < 2. If in addition we assume that maz{a, b} = mis
the order of a proper subplane, then n = m?, i(a,b) = 1, and m is the order
of a group subplane but m — 1 cannot be the order of a group subplane. The
existence of the group subplane of order m is provided by the centralizer of
an involutory multiplier. In general, the centralizer of a multiplier provides
a group subplane. This shows once again how the existence of non trivial
multipliers influences the study of Singer groups. The non-existence of a group
subplane of order m — 1 follows from Theorem 2.1 below. When n = m?, the
question whether a subgroup of order v(m) (or v(m — 1)) is a subplane or
not is still not settled. The question whether a group subplane can always be
realized as a centralizer of a multiplier is still open.

For an abelian Singer group, Theorem 1.2 yields several results on the
nonexistence of certain group subplanes. Sections 4 and 5 contain some gen-
eral results in this direction. One of the results in 4.5 is the following.

Theorem 1.3 Let S be an abelian Singer group of square planar order n.
Suppose v(n) = v(z)v(y)v(z) where ¢ < y < z. Then z,y,z cannot all be
.orders of group subplanes.

The author would like to thank Professor Feit for his interest in the subject
and encouraging conversations. The author also would like to express his grat-
itude to the Department of Mathematics, Yale University, where the major
part of this article has been written.

2. Definitions, notations and some known results

Let p be a prime number. For any integer m, m, denotes the highest power of
p dividing m. For a Singer group S of a finite projective plane, the multiplier
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group of S is denoted by M(S), and the planar order of S is defined to be the
order of the projective plane. A group subplane of a Singer group is a subplane
which is also a subgroup. For an integer t and s € S, if u(t): s — stisa
multiplier, then we call ¢t a numerical multiplier. Sometimes we say that ¢ is
a multiplier to mean that ¢ is a numerical multiplier.

For a set of collineations H, let P(H) (respectively, L(H)) be the set
of common fixed points (respectively, lines) of the elements of H and Fiz(H)
be the set of fixed point-line substructure (P(H), L(H)) of H. A collineation
« is planar if Fiz(a) is a subplane.

Our terminology in group theory is taken from [4], that of projective

planes is taken from [10], and that of difference sets is taken from [1] or [11].
For the convenience of the reader we recall some known results.
Theorem 2.1 (Ho)[9] Let S be a Singer group of a projective plane of order
n and let M = M(S) be the multiplier group of S. Then a Sylow 2- subgroup
of M s cyclic. Suppose M has an involution a. Then n is a square, S = AB,
where A = [S,a] = {s € S|s* = 57!} is an abelian normal Hall subgroup of
order v(y/n—1), which is an arc (i.e., no three points of A are collinear); and
B = Cs(a) is a Hall subgroup, which is a Baer subplane. Further, S= Ax B
except possibly for n = 16.

Theorem 2.2 (Bruck)[10] Let m be the order of a proper subplane of a
projective plane of order n. Then n =m? orm? + m < n.

Theorem 2.3 (Hall)[10] If S is an abelian Singer group of planar order n,
then any divisor of n is a multiplier (in the sense that s — s™ is a multiplier).

In particular, if n = m?, then m3 is an involutory multiplier.

Lemma 2.4 A nontrivial multiplier cannot be a perspectivity. Thus an In-
volutory multiplier is a Baer involution (i.e., its fixed point-line substructure
is a Baer subplane). In particular, the map s — s~! is not a multiplier.

Proof. The first conclusion is known. (See, for example, 2.1 of [9]) The
second conclusion follows from the first and the fact that an involutory
collineation is a quasiperspectivity. (See, for example, [10].) The last con-
clusion can be deduced from the second conclusion. a

3. Singer groups with an even order multiplier group

In this section, we assume that the multiplier group M = M(S) of a Singer
group S of planar order n has even order. Let a be the involution of M. We

write A =[S, a] and B = Cs(a).
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Proof of Theorem 1.2 (1) We now prove that each subgroup of S is
a-invariant except possibly when n = 16 and S is non abelian. Let w be the
set of prime divisors of |A| and w’ be the complement of w. Suppose n # 16
or S is abelian. Then § = A x B, where A is a Hall w-subgroup and B is a
Hall w'- subgroup of S by 2.1. Let G be a subgroup of S. Since |§| is odd,
S is solvable by [3]. Thus G is solvable. So G = HK, where H is a Hall
w-subgroup and K is Hall w'-subgroup of G. The normality of A implies that
A is the unique Hall w-subgroup of S. Hence H < A. Since « inverts every
element of A, H* = H. Next K < B as B is the unique Hall w'-subgroup of
S. Since « centralizes B, K* = K. Therefore G* = H*K* = HK = G and
G is a-invariant as desired.

(2) We now prove that a group subplane not in B must have square
planar order. Let R be a group subplane of S of planar order r not contained
in B. If n # 16, then R is a-invariant by (1). So « induces a nontrivial
involutory multiplier of R. This implies that r is a square by 2.1.

Next assume n = 16. If R is a Baer subplane, then r = 4 is a square.
Suppose R is not a Baer subplane, then r? +r <16 by 2.2. So 2<r < 3. If
r = 2 (respectively, 3), then |R| = 7 (respectively, 13). A moment of thought
shows that R is a normal Sylow subgroup of S in both cases. Hence R is
characteristic. Since o does not centralize R as R is not contained in B, this
implies that « inverts R, as R has prime order. This contradicts 2.4, as « is
a multiplier of R. This completes the proof of (2). a

Remarks
(1) For a Singer group S of planar order 16, if |M(S)|, = 2, then M(B)
has odd order. (See for example [5].) Let H be a subgroup of order 3. If 13
divides |Cs(H)|, then there are exactly 7 subgroups of order 3 and all these
subgroups are in B. A moment of thought shows that each subgroup of S is
a-invariant in this case.

Assume now that 13 does not divide |Cs(H)|. Since there are at most
7 subgroups of order 3 in B, there are at least two subgroups H; and H,
of order 3 in HA not in B. Note that A = [H,, H,), and H; is conjugate
to H, in HA. So we may assume A =< a >, such that a = hjhy, where
H, =< hy > and H, =< hy >. By the definition of A, a®* = a~!. Suppose a
leaves invariant H; and H,. Then A% = h! and h$ = h;'. This implies that
Ry'hT! = a7! = a® = h®h$ = h7'h3'. So [k, hy] = 1, which is impossible.
This contradiction shows that at least one subgroup of order 3 is not a-
invariant.

(2) In a cyclic Singer group of a Desarguesian plane of order n = 5% =
(5%)° = (5%)?, the involutory multiplier @ : z — «(*)’ fixes the Baer subplane
B of order 5°. Note that B contains a group subplane of order 5, which is not
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of square order. There is also a group subplane V of order 5, which is Cg(8),
where 8 : z — z(5*) is a multiplier of order 5. Note that V is of square order.
Also V ¢ B. (One way to see this is by considering the restriction of a.)

Corollary 3.1 Let n = m?. Suppose m = kl, where 1 < k < ! and [ is not a
square. Then [ cannot be the order of a group subplane.

Proof. By way of contradiction, let L be a subplane of order [. Since [ is
not a square, L C B by the second conclusion of 1.2. The order of the Baer
subplane is m and m > [ as k > 1. By 2.2, this implies that [2 < m. However
m = kl < I* as k < . This contradiction proves the corollary. O

Remark

Let n = 22 - 82, where m = 2 -8 = kl. Then a group subplane of order 8
cannot exist when S admits an involutory multiplier « ( for example when §
is abelian). On the other hand, there certainly exists a group subplane of order
2 in a Desarguesian plane of order 22 - 82 even though 2 is not a square. Thus
the condition k < [ is essential in 3.1. We now improve the above corollary.
In the following theorem the commutativity of the Singer group is used to
provide enough multipliers in order to apply induction.

Theorem 3.2 Let S be an abelian Singer group of planar order n = m?°
with a > 1. Suppose m = kl, where 1 < k < [ and [ is not a square. Then I’
cannot be the order of a group subplane for any integer j > 1.

Proof. By way of contradiction, let L be a group subplane of order . We
use induction on n and j. Since S is abelian and n is a square , S admits
an involutory multiplier a. Let B = Cg(a). We divide the proof into the
following steps.

Step 1. S does not contain any group subplane of order [, i.e., the case
} = 1 cannot occur.
Proof. The case a = 1 is treated by 3.1. Assume a > 1. Since [ is not a
square, a group subplane of order ! is in B by 1.2. Since a — 1 > 1 and the
planar order of B is m?*™", induction on n shows that B does not contain any
group subplane of order [. This establishes the claim in Step 1.

Step 2. 7 is odd.
Proof. This follows from an induction on j and the fact that a group
subplane of order ¥’ for some even j contains a group subplane of order 13,

Step 3. Final contradiction.
Proof. Since!lis not a square and j is odd by Step 2, I/ is not a square. Thus
I # n. Then L is a proper subplane of order 9, so (/)2 < n = (kI)?* < 2*"
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as k < I. Hence 25 < 2°*! and j < 2°. As j is odd and j > 1 by Step 1,
this last inequality forces a > 1. Since ¥ is not a square, 1.2 implies that
L C B. Now applying induction on the planar order m?*™" of B yields the
final contradiction. a

Corollary 3.3 Let n = (pq)*, where p # ¢, and both p and g are not
squares. If n is the planar order of an abelian Singer group, then p* and ¢%
cannot both be orders of group subplanes for 1 < 1,7 < a.

Proof. This is because either p > g or ¢ > p, and the fact that a group
subplane of order r? contains a group subplane of order r. a

Proof of Theorem 1.1 We want to prove that the group subplanes of a
Singer group of planar order 81 are the subgroups of order 13, 7 - 13 and
7-13 . 73, whose planar orders are 3, 9 and 81 respectively.

Observe that a group of order v(81) = v(8)v(3)v(2) = 73-13-7 is
abelian. One way to see this is to show consecutively that subgroups of order
73, 13 and 7, respectively, are central. ( Hence a Singer group S of planar
order 81 is cyclic. Therefore the corresponding plane is Desarguesian by a
result of V.K. Keiser on p.209 of [2].) The following proof does not use the
fact that the plane is Desarguesian but uses the commutativity of S to provide
the multipliers needed. Since 81 is a square and S is abelian, S admits an
involutory multiplier e Since 8 and 2 are not squares, 1.2 implies that a group
subplane V of order 8 or 2 is in the Baer subplane B = Cs(«). Applying 1.2
again, this time to B, we see that V is in the Baer subplane of B, which has
order 3. Since both 82 and 2% are bigger than 3, Bruck’s result (2.2) yields
a contradiction if V' exists. This proves that S does not contain a group
subplane of order 8 or 2.

Next, we determine all group subplanes of S. The orders of subgroups
are 1, 7,13, 73, 7-13, 7-73, 13.73, and 7-13.73. Let H be a group
subplane of order r of S. We just proved that r # 8 and 2. Hence |H| # 7
and 73. If 73 divides |H| = v(r), then r = 8 or 64 (mod 73). This rules
out the possibilities that v(r) = v(2)v(8) and v(3)v(8). (Clearly r # 8. Since
v(64) = v(8%) = v(7)v(8) > v(2)v(8) and v(3)v(8), so r < 64. Now 8+73 > 64
proves that r cannot exist.) Hence H = § if 73 divides | H|. Therefore a group
subplane is a subgroup of order 13, 7-13 or 7. 13 - 73. Since a subgroup of
one of these orders is the set of fixed points of a multiplier, it is a subplane
of planar order 3, 9 or 81. This completes the proof of Theorem 1.1. o

193



HO: PLANAR SINGER GROUPS

Remark

The reason why 2, 3, and 8 cannot all be orders of group subplanes is easily
obtained by Theorem 1.3, which we will prove in the following section.

4. The function v(n) and group subplanes

For any real number z, let v(z) = £ +z+1 = N(¢ —w), where w is a complex
primitive third root of unity. The example v(2)v(4)v(9) = v(1)v(3)v(2)® =
v(1)v(3)v(18) convinces us that some conditions are needed in order to study
the product v(z)v(y)v(z) in a reasonable way. (Note that v(2)v(4)v(9) #
v(n) for any n.) Our aim is to relate this product to the study of projective
planes. We remark that in a cyclic Singer group of a Desarguesian plane of
order 16, the equation v(16%) = v(16)v(15) = v(3)v(4)v(15) = v(1)v(9)v(15)
holds. Therefore if we let z = 1, y = 9, z = 15 and n = 162, then v(n) =
v(z)v(y)v(z) and none of z, y, z is the order of a group subplane. (Here we
distinguish triangles and subplanes.) Thus Theorem 1.3 says that for a square
n, if v(n) = v(z)v(y)v(z) such that n is the planar order of an abelian Singer
group and z < y < z, then the number of elements in the set {z,y, 2} which
are orders of group subplanes can be 0,or 1, or 2 but not 3.

In this section we are interested in the situation where v(n) = v(z)v(y v(z)
with £ < y < z. Reasonable conditions imply y? # z. (See, for example, 4.2
and 4.3 below.)

Whenever n = m*, v(n) = v(m—1)v(m)v(m?—1). In this case if we let
z=m—1, y=m, z=m?— 1, then y? > 2. Note that in an abelian Singer
group of planar order n = m?*, m is the order of a Baer subplane of a Baer
subplane, and both m — 1, m? — 1 cannot be the order of a group subplane. (
Looking at the Baer subplane of order m?, the equation v(m?) = v(m—1)v(m)
rules out the possibility for m — 1 to be the order of a group subplane by
Theorem 2.1. The possibility for m? — 1 is ruled out by the same reason and
the equation v((m?)?) = v(m? — 1)u(m?).)

Next the example v(17%) = v(16)v(17) = v(3)v(4)v(17) is of the form
v((y?+1)?) = v(y—1)v(y)v(y*+1), wherey = 4. If weletz =3, y = 4, z=17
and n = 172, then v(n) = v(z)v(y)v(z) and y? = 16 < z = 17. In a cyclic
Singer group of a Desarguesian plane of order 172, 17 is the order of a Baer
subplane, none of 3 and 4 is the order of a group subplane.

Again the example v(17%) = v(3)v(4)v(17) = v(1)v(9)v(17) shows that
in v(n) = v(z)v(y)v(z) with z < y < z, it is possible that y* > 2z and z is the
order of a group subplane but both z and y are not. Note also that in this
example y = 9 is a square.

We begin by studying some Diophantine equations.

Theorem 4.1 Let ¢, f,c,d,j, and m be positive integers.
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(1) Ifv(m) = ev(c)v(d) and v(m — 1) = fv(c—1)v(d — 1), then f > e.

(2) The simultaneous equations v(m) = wv(c)u(d) and v(m — 1)
v(c— 1)v(d — 1) have no solutions.

(3) The simultaneous equations v(m) = v(j)v(c)v(d) and v(m — 1) =
v(j — 1)v(c — 1)v(d — 1) have no solutions.

Proof.

(1) By way of contradiction, assume e > f. Without loss of generality, we
may assume that ¢ < d. Suppose fu(d — 1) < m. Then v(d — 1) <
m as f > 1. From ¢ < d, we obtain v(c — 1) < v(d—1) < m. So
v(c—1) <m—1. Hencem?—m+1=v(m—1)= fo(c—1w(d—1) =
(fv(d — 1)y(c —1) < m(m — 1) = m? — m, a contradiction. Hence
fv(d — 1) > m. However, this implies that v(m — 1) + 2m = v(m) =
ev(cyu(d) = e(v(c—1)+2c)(v(d—1)+2d) = e(v(c—1)v(d—1) +2(v(c—
1)d+cv(d—1))+4cd) > f(v(c—1)v(d—1))+2f(v(c—1)d+cv(d—1))+
d4fcd > v(m—1)+2fv(c—1)d+2cfv(d—1) +4cfd > v(m—1) 4+ 2m.
This contradiction establishes (1).

(2) This follows from (1) by taking e =1 and f = 1.

(3) This follows from (1) as v(z) > v(z — 1) for z € {7, ¢, d}.

a

In the rest of this section, n,x,y, z will always denote positive integers.

Lemma 4.2 (1) If v(y) does not divide v(z), then z # y*.
(2) Suppose v(n) = v(z)v(y)v(z) where ¢ < y < z. Thenn # ¥ If in
addition we assume that y? > z, then n < y*.

Proof.

(1) This is because v(y?) = v(y)v(y — 1).

(2) Assume v(n) = v(z)v(y)v(z) where ¢ < y < 2. If n = y?, then v(y —
u(y) = v(y?) = v(n) < v(z)v(y)v(z), a contradiction. Hence n # y2.
Suppose y? > z. Then v(n) = v(z)v(y)v(z) < v(y — v(y)v(z) =
v(y?(z) < v(y?)v(y? — 1) = v(y*). Therefore n < y* as desired.

a

Theorem 4.3 Let v(n) = v(z)v(y)v(z) where z < y < z. If n is the order of
a projective plane and z is the order of a subplane, then y*> # z. Furthermore,
n=z24z=y*+ 1,z =y—1 ifand only if y? < 2.

Remark

{3,4,17} and {9,10,101} are two sets of examples for {y — 1,y,¥% + 1}.
Proof. Suppose y> = z. Then v(z) = v(y —1)v(y). z = y—1, then v(n) =
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v(y — 1)*v(y)?, which is a square. This is impossible. Therefore z # y — 1.
Since z < y, this implies that z < y — 1. So z + 1 < y — 1. This implies
o(n) = v(@)(yu(z) < (e + DY) < o((y — Dy)u(z) = (y? — y(z).
However, y > 1. So v(y? — y)u(z) < v(y? — 1)(z) = v(z — 1)u(z) = v(2?).
Therefore n < 2%. However z ,being the order of a subplane, satisfies 22 < n
by 2.2. This contradiction proves that y% # z.

If n = 2%, y? = z — 1, then of course y? < 2.

We now assume y? < z. Then v(n) = v(z)v(y)v(z) < v(y—1)v(y)v(z) =
v(y?)v(z) € v(z—1)v(z) < v(z?). Hence n < 22. On the other hand 2? < n by
2.2. Therefore n = z%. This implies, by the expression of v(n), that v(z—1) =
v(z)v(y) < v(y?) as z < y. So z— 1 < y2. From y? < z, we obtain y? = z — 1.
This together with the equation v(z — 1) = v(z)v(y) implies ¢ = y — 1 as
desired. o

The following lemma studies the case y2 > z.

Lemma 4.4 Assumev(n) = v(z)v(y)v(z) wherez <y < z and y*> > z. If n
is the order of a projective plane, then the following conclusions hold.
(1) If z is the order of a subplane of a Baer subplane, then n = z%.
(2) Ify is the order of a subplane of a Baer subplane, thenn = y*, ¢ = y—1,
and z =y — 1.

Proof.

(1) Consider a subplane of order z inside the Baer group subplane of order
\/n. If these two subplanes coincide, then 22 = n. If they are distinct,
then 22 < /n by 2.2. Since n < y* < 2* by the second conclusion of
4.2, \/n < 2%, a contradiction. Hence n = 22.

(2) As in (1), either y*> = n or y* < \/n by 2.2. However, if y* = n, then
v(y — u(y) = v(n) = v(z)v(y)v(z) will imply v(y — 1) = v(z)v(2),
which contradicts the fact that z > y — 1. Hence y? < y/n. On the other
hand, \/n < y® by 4.2. Therefore n = y* as desired. So v(y—1)v(y)v(y*—
1) = u(y*) = u(n) = v(a)(y)o(z) implies v(y — u(y? — 1) = v(a)u(2)
Since ¢ < y and y? > 2z, we have z < y — 1, z < y? — 1. This together
with the last equation implies that £ = y — 1 and z = y% — 1 as desired.

[}

Remarks
(1) In the first statement of 4.4, we cannot prove that ¢ = y — 1 and
y? — 1 = z as the example v(1)v(9)v(17) = v(17%), with ¢ = 1,y =
9,z2=17,n = 17%, and 92 = y2 > 17 = z shows.
(2) The example v(2)v(3)v(8) = v(81) shows that case 2 of 4.4 really occurs.
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We now apply the above results to abelian Singer groups. Justification for
y? # z can be found in (1) of 4.2 or 4.3.

Theorem 4.5 Let S be an abelian Singer group of planar order n = m?.
Suppose v(n) = v(z)v(y)v(z) where z < y < 2.
(1) If y* < z and z is the order of a subplane, then n = 2%,y* = z — 1,

z=1vy —~ 1, and ¢ and y cannot both be orders of group subplanes.

(2) Ify? > z and z is the order of a subplane inside a Baer subplane, then

n = 22 and z and y cannot both be orders of group subplanes.

(3) Ify? > z and y is the order of a subplane inside a Baer subplane, then

)

(5)

n=yz=y—1,z=19y*—1, and = and y cannot both be orders of
group subplanes.

Suppose y* > 2. Let s € {y, z}. If s is not a square and s is the order of
a group subplane, then this subplane is a subplane of a Baer subplane
and the corresponding conclusions in (2) or (3) hold.

The numbers ,y, z cannot all be orders of group subplanes.

Proof. Since S is abelian, S admits an involutory multiplier & as n is a
square. Let B = Cs(a) and A =[S, a].

(1)

(2)

(3)

(4)
(5)

By 4.3, it suffices to prove that = and y cannot both be orders of group
subplanes. A group subplane G of order z or y is in A by an elementary
argument using group orders. But A is an arc by 2.1. This proves that
G cannot exist and establishes (1).

By (1) of 4.4, n = 22 This implies that v(z)v(y) = v(z — 1). An
argument using group orders shows that a subgroup of order v(z) or
v(y) is inside the Hall subgroup A. We now reach the conclusion as in
the proof of (1).

By (2) of 4.4, n = y*,z = y — 1, and z = y? — 1. A subgroup of order
v(z) must be A, which is an arc. So z cannot be the order of a group
subplane. A subgroup of order v(y — 1) coincides with B; = [B, ],
where (3 is the involutory multiplier of B (8 exists as the planar order
of B is y?). Again B, is an arc. So z = y — 1 cannot be the order of a
group subplane.

We reach the hypothesis imposed on s in (2) or (3) by Theorem 1.2.
By way of contradiction, suppose x,y, z are orders of group subplanes
X,Y, Z respectively. By 4.3, y* # z. By (1) ¥* < z cannot occur. So
y? > z. Both y and z must be squares by (4), say y = ¢? and z = d%
Also we may assume that Y ¢ B and Z ¢ B by (2) and (3). By 1.2, X
is a- invariant. Hence X = [X, o] x Cx(a). f X C B, then X = Cx(a).
If X ¢ B, then z is a square by 1.2, say z = h?, and |[X, a]| = v(h 1)
and |Cx(a)| = v(h). Let e = |Cx(a)| and f = |[X, a]|. Then whether

197



HO: PLANAR SINGER GROUPS

ornot X C Bor X ¢ B, we have f < e, e divides v(m) and f divides
v(m —1). :
Since Y ¢ B, Y = [Y,a] x Cy(a) is a nontrivial product. So v(y) =
v(c—1)v(c) and v(c—1)|v(m —1) as |[Y, ]| = v(c—1) and [Y,a] C 4,
and v(c)|v(m) as Cy(a) < B. Similarly from Z = [Z,a] x Cz(a), we
obtain v(z) = v(d — 1)v(d) and v(d — 1)|v(m — 1), and v(d)|v(m).
Hence v(m—1)v(m) = v(n) = v(z)v(y)v(z) = (fv(c—1)v(d—1))(ev(c)v(d)
Now (v(m — 1),v(m)) = 1 and flv(m — 1); v(c— 1)jv(m — 1); v(d —
)|v(m—1); elv(m); v(c)|v(m); v(d)|v(m). So (fv(c—1)v(d—1),v(m)) =
1. Thus fv(c—1)v(d—1)|v(m—1). Similarly (ev(c)v(d),v(m—1))=1.
So ev(c)u(d)|v(m). This together with the equation v(m — 1)v(m) =
(fv(c—1)v(d—1))(ev(c)v(d)) implies that v(m) = ev(c)v(d) and v(m —
1) = fv(c — 1)v(d — 1). However, this contradicts 4.1 as e > f. This
contradiction establishes (5).

a
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On a footnote of Tits concerning
D, -geometries

C. Huybrechts*

Abstract

If T is a thick and residually connected D,,-geometry, n > 4, it is well
known that T’ is defined over a unique ground division ring which is
commutative. Here we give an elementary proof of the commutativity
based on the construction of null polarities in the projective subspaces
of T, for n = 4.

1. Introduction

Geometries over a diagram of type D,,, n > 4 are completely classified and well
known. They are often discussed together with polar spaces since they stem
essentially from quadrics of maximal Witt index. However, the theory of polar
spaces is rather intricate and it requires well over a hundred printed pages
as we can see from [11] or [4]. A straightforward theory for D, geometries
is much simpler and shorter. Actually, it may come next to the theory of
projective geometries by its simplicity. This was observed quite early ([10]).

We are developing a selfcontained theory of D,-geometries from the
definition to the classification. To the best of our knowledge such a treatment
is not yet available. It may be useful in various directions, in particular the
preparation of extensions to geometries over slightly more general diagrams.

The main result of the theory is as follows.

If T is a thick D,-geometry, n > 4, then there is a field F' such that T’
1s isomorphic to the geometry of all singular subspaces of the quadric @ in
the projective space Pyn,—;(F') of dimension 2n — 1 over the field F, defined
by the equation z;z,+ ...+ Z2n—1Z2, = 0. This result is due to Tits ([9], [11],
[12]) up to some improvements by Meixner (see (8] and [2])

One of the first goals of the theory is to show that the division ring
underlying the residual projective geometries of a thick D,-geometry is com-
mutative. This is the purpose of the present paper. In order to do so, it suffices
to deal with the case n = 4. We make use of a footnote in [10], hinting at
the presence of symplectic polarities in the singular 3- subspaces of a D,-

*. Aspirant du Fonds National Belge de la Recherche Scientifique
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geometry, I'. These polarities are inherited from I'. They force the required
commutativity of the ground division ring.
Here is the observation made by Tits.

La commutativité du corps de base résulte du fait que les géométries
projectives & 3 dimensions résiduelles d’une géométrie I' de type
D,, sont porteuses de polarités nulles, qu’on obtient au moyen de
constructions explicites au sein de I'. ([10]).

It s not necessarily obvious to check this property. We are giving a way
to do so. The idea is to choose three maximal pairwise disjoint 3-dimensional
singular projective subspaces of the geometry I' and to study the structure
induced by the collinearity relation on their union.

This material is part of a dissertation [7] written under the supervision
of F.Buekenhout who provided helpful conversations on it.

2. Main results

We assume some knowledge of basic facts from the theory of diagram geome-
tries (see for instance (3] or [4]).
We recall the following statements.

Direct sum theorem. Let T’ be a residually connected geometry of finite
rank over I, Let i, j be elements of I which are contained in distinct connected
components of the basic diagram of I'. Then every i-element of I is incident
with every j-element of T

Theorem 2.1 Let T’ be a residually connected geometry over I. If 1,5 are
two distinct elements of I and if p,q are elements of I, then there is a path
from p to q in the incidence graph of T, all of whose elements different from
p and q are of typei or j.

We also recall that a geometry is said to be firm (resp. thick) if any of
its comaximal flag is contained in at most two (resp. three) chambers.

Let T be a thick and residually connected D,-geometry (n > 4). Let
the set of types be I = {0,1,2,...,n — 3,r,b}, these elements being used as

on the diagram
0 1 n—4 n_<07‘
o——o0 ... o0
ob

We call the elements of type 0, 1, » and b respectively points, lines, reds and
blues.
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If two elements z,y of I" have no common incident point, then we say
that z, and y are disjoint.
The geometry I has residues of type A,_;, namely

0 1 2 n—3
(o] e

o o O——————o

and these are projective geometries. In such a geometry, a null polarity is a
polarity 7 such that any point p is incident with its image =(p).

Since n > 4, these thick projective geometries are Desarguesian and
they are defined over a ground division ring D(T') which is uniquely defined
for T, in view of the fact that I is residually connected.

In this paper, we shall first show that if n = 4, the following properties

hold in T
(3DR) (Three Disjoint Reds). For any red R of T', there are two reds R,
R" such that R, R" and R" are pairwise disjoint.

(D) (Duality). If R and R’ are disjoint reds, then I' induces a duality of
T'r onto I'g.

(NP) (Null Polarity). If R is a red, then 'r carries a null polarity.

Next, we get the following theorem on D,.

Theorem. The ground division ring of a thick and residually connected D,,-
geometry is a field.

3. Preliminaries

We recall some definitions. The shadow oo(z) of an element z of T is the
set of points incident with z. Two points incident with a line are said to be
collinear. We put p' for the set of points collinear with p. Let F' = (F});es be
a nonempty flag. We define F'* as the set of points which are collinear with
any point of go(F;) for all 7 in J. We list elementary properties of firm and
residually connected D,-geometries (n > 4) that we need in order to prove
our main results. These properties are well known. Their proofs are gathered
in [7] and in [6].

(LL). Two different points are incident with at most one line [8].

(OS). If z,y are distinct elements of the same type or if z is a red and y is
a blue, then there is a point incident to ¢ and not incident with y.

(O). Distinct elements of the same type have different shadows [8].
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(IBR). If B is a blue and R is a red, then one of the following holds :
a) the elements B and R are incident,
b) there exists an element 2z, incident with B and R such that
oo(2zx) = oo(B) Noo(R) with0 < k <n —4 and n — k even,
¢) n is odd and B is disjoint from R.
If R, R' are distinct reds, then one of the following holds :
d) there exists an element z, incident with R and with R’ such that
oo(2zx) = 0o(R) Noo(R') with0 < k <n —3 and n — k odd,
e) n is even and R is disjoint from R'.

(SPCP). Let p be a point and let R be a red not incident with p. Then, there
is a unique blue B incident with R and such that p* Noo(R) = go(B)Noo(R).
Moreover, this blue is the unique blue incident with p and with R.

(SPCB). Assume that n = 4. Let R be a red and let B be a blue incident
to R. If R’ is a red disjoint from R, then there is a unique point p incident
with B and such that {B, R}* Nao(R') = {p}. This point is the unique point
incident with B and with R'.

(SPCL). Assumethatn = 4. Let R be a red and let N be a line disjoint from
R. Then there is a unique line L such that N* N oo(R) = 0o(L). Moreover,
this line is incident with R.

Here are some properties concerning polarities in projective geometries
needed afterwards.

Property (B). [1] Let ' be a projective geometry of rank at least 3 over
a division ring D. If T carries a null polarity, then the division ring D is
commutative.

Assume now that I' is a thick geometry over I = {0,1,...,n — 1}
belonging to A,, where n > 3 and that § is a duality of I". It is well known
that § is a polarity if and only if for any two points p, g the point g is incident
with §(p) whenever p is incident with §(g). [1].

The following statement is perhaps well known.

Property (P). Let é be a duality of ' such that any point p is incident with
8(p). Then § is a polarity.

Proof. Assume that p, q are two different points such that g is incident with
8(p) and p is not incident with §(q). As §(p) and é(gq) are distinct (n — 1)-
elements in the residue I'y, there is a (n — 2)-element z,_, incident with §(p),
with §(q) and with q. Using the direct sum theorem in the residue of z,_,
and the fact that p is not incident with §(g), we deduce that p is not incident
with £,_,. As T is a projective geometry, there is a line L incident with p and
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with gq. By the thickness of the geometry, there is a point r different from the
points p and ¢ and incident with the line L . As p,q,r are incident with L
and as § is a morphism, the elements §(p), 6(q), 8(r) are incident with §(L).
However, the elements x,,_,, §(L) are of type n — 2 and are both incident
with 8(p), 8(q). Hence the elements §(L) and x,_, are equal, which implies
that z,_ is incident with §(r). By the direct sum theorem in the residue of
Tn_2, the point ¢ is incident with §(r). As the points ¢,r are in the residue
of §(r) which is a projective geometry, the line L is also in this residue and
by the direct sum theorem, the point p is incident with §(r). So the elements
P, Tn—y are incident with the elements §(p), §(r), which means that §(p) and
8(r) are equal because p is not incident with z,_,. This contradicts the fact
that § is bijective. We thus have shown that if g is incident with §(p), then p
is incident with 8(q), for any points p, g. We deduce that § is a polarity. O

4. Existence of three disjoint reds in D,

In this section, I' denotes a thick and residually connected D,-geometry.
Definition Let z,y be elements of T. If there is a line L incident with  and
with y such that oo(z)Noo(y) = oo(L), then we say that z intersectsy in the
line L.

Property (3DR) (Three Disjoints Reds). For any red R of T, there are
two reds R', R" such that R, R' and R" are pairwise disjoint.

Proof. We start constructing R' By definition of a geometry, there is a
line L incident with R. Using the firmness of the geometry, we deduce that
there is a red R° different from R and incident with L. As ['go is a projective
geometry, there is a line N disjoint from L in this residue. By the firmness
of the geometry, there is a red R’ different from R° and incident with N.
The direct sum theorem and properties (IBR), (OS) of section 3 imply that
the red R° intersects R (resp. R') in the line L (resp. N). Hence, as the
lines L and N are disjoint, the line L is disjoint from R’ and the line N is
disjoint from R. We now show that the reds R and R’ are disjoint. Suppose
by way of contradiction that there is a point p incident with R and with R'.
Hence, as p and N are in the projective geometry I'g/, the point p is in N,
However, using the fact that the lines L and N are in the projective geometry
['go, the direct sum theorem and properties (SPCL), (OS) of section 3, we
deduce that oo(R) N N+ = 0y(L). Hence the point p is incident with L. This
is impossible because the point p is also incident with R' and we showed
earlier that L and R’ are disjoint. We now construct R". As the lines L and
N are in the 3-dimensional and thick projective geometry I'go, there is a
point not incident with L and N in this residue. There is thus a point p not
incident with R and with R’ in the geometry. By property (SPCP) of section
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3, there is a blue B (resp. B') incident with p and R (resp. R') such that
oo( B) N ao(R) = p* N ao(R) (resp. ao(B') Nao(R') = p* Noo(R')). As B, B’
are in the 3-dimensional and thick projective geometry I'y, there is a red R"
in this residue, not incident with B and with B’. Property (IBR) implies that
p is the unique point incident with R” and with B. The reds R and R" are
disjoint. Indeed, assume that there is a point ¢ incident with R and with R".
Hence, as the points p, ¢ are in the projective geometry I'rv, the point q is
collinear with p. The point ¢ is thus incident with B. However, the point ¢
is also incident with R". The points p,q are then equal, which is impossible
because p is not incident with R. By symmetry, the reds R’ and R” are also
disjoint. m]

5. Construction of null polarities in D,

In this section, I' denotes a thick and residually connected D,-geometry.
Assume that R and R' are pairwise disjoint reds. Thanks to properties

(SPCP), (SPCL) and (SPCB) of section 3, we may introduce a mapping ér'r
of I'r: onto I'r, defined in the following way. Let p be a point of I'gs:, let N
be a line of I'g/ and let B’ be a blue of I'g,. Then

o Sr:p(p) is the blue B incident with R and with p,

e Srip(N) is the line L such that oo(L) = Nt N ao(R),

o Spip(B') is the point p incident with B’ and with R.

Property (D) (Duality). If R and R' are disjoint reds, then I' induces a
duality §p:g of 'r: onto I'g. Its inverse is égp:.

Proof. By properties (SPCP), (SPCL) and (SPCB) of section 3, the map-
pings drr.0rR' and 8grp:.6r:r are equal to the identity. The mapping 8grg is
thus a bijective mapping and §; (namely the permutation induced on I) has
order 2. Properties (SPCP), (SPCL), (SPCB) and (LL) of section 3 imply
that dr'r maps two incident elements of I'g: on two incident elements of I'g
and two elements of the same type on two elements of the same type. Hence,
using the symmetry between R’ and R, we deduce that dp/g is a duality. O

Notation. If R,R' and R" are pairwise disjoint reds, then we put wg for
SRIIR,SRIR/I,b-RRI,

Property (NP) (Null Polarity). If R is a red, then I'r carries a null
polarity ng.

Proof. By property (3DR) of section 4, there are two reds R’ and R" such
that R, R’ and R" are pairwise disjoint. We first show that any point p is
incident with wr(p). By definition, the blue §gr/(p) is incident with the points
p and gg.0rr/(p). The points p and ér/pr+.6rr/(p) are then collinear. Hence
the point r is incident with the blue 5R”R~5R’R”~5RR’(P), which is 7I'R(p). We
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now show that ng iIs a polarity. By property (D), this mapping is the product
of three dualities. It is thus a duality and property (P) of section 3 implies
that the mapping mg is a polarity. a

For more informationconcerning dualities and polarities of D, -geometries,
n > 4, see [5].

6. Proof of the theorem on D,.
Let T be a thick and residually connected D, -geometry.

Theorem. The ground division ring of T' is a field.

Proof. We proceed by induction on n. We first assume that n = 4. By
definition of a geometry, there is a red R in I'. Properties (B) of section 3 and
(NP) of section 5 imply that the ground division ring of I'g is a field. Hence,
the ground division ring D(T') is a field. We now assume that n > 5. If F'is
a flag of type {0,...,n — 5}, then the residue I'r belongs to the diagram D,.
Hence, by the induction hypothesis, the ground division ring of I'r is a field,
which shows that D(T) is a field. 0
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The structure of the central units of a
commutative semifield plane

V. Jha G. P. Wene

Abstract

Let 7'~ be a semifield plane of order ¢", with middle nucleus G F(q).
Relative to any fixed natural autotopism triangle, every fixed affine
point I (not on the triangle) determines up to isomorphism a unique
coordinatising semifield Dy. I is called a central unit if Dy is commu-
tative. We determine the geometric distribution of the central units
of m'= and hence show that the plane has precisely (¢" — 1){(g — 1)
central units.

1. Introduction

Let ‘= be a semifield plane with an autotopism triangle OXY: where XY =
. is the translation axis, and OY is a shears axis, with O € w‘=. Now
each choice of a “unit point” I, off the chosen autotopism triangle (assumed
fixed from now on) determines uniquely up to isomorphism a semifield D;
that coordinatises wf~, We shall call I a central unit relative to the chosen
frame if Dy is a commutative semifield. By a criterion of Ganley [2] [theorem
3] the finite semifield planes admitting central units are precisely the finite
translation planes that admit orthogonal polarities. However, no geometric
characterisation of the set of central units in a given semifield plane has ever
been recorded. The purpose of this note is to provide a geometric description
of the distribution of the central units of a given commutative semifield plane.
Our result implies:

Corollary 1.1 A commutative semifield plane of order ¢V with middle nu-
cleus GF(q) has precisely (¢¥ — 1)(q — 1) central units (relative to a fixed
autotopism triangle whose sides include the translation axis and a shears
axis).

This combinatorial result is a consequence of our main theorem which
gives a geometric description of the distribution of the central units. This is
given in terms of the K := (¢¥ — 1)/(g — 1) rational Desarguesian nets of
degree g+ 1 that are left fixed by the full group of middle-nucleus homologies
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H (with axis OY and coaxis OX). We show that there is a set of middle-
nucleus planes {m; ... 7k}, exactly one in each of the K middle-nucleus nets
fixed by H, such that the set C of central units is given by

N
C= UW;—(OXUOY).

=1

Thus the set C, of central units, is a disjoint union of the “interiors” (excluding
their points on the autotopism triangle OXY') of K middle-nucleus planes,
any two of which share only two points on £y,viz., {X,Y}.

We would like acknowledge that the ideas used in this article are inspired
by an old result of Albert [1, p. 703 16 eqn (3)], later rediscovered by Ganley
(2, theorem 4] in answering a question of P. Dembowski.

2. Central units for semifield spreads

In this section we state a spread-theoretic version of the above indicated
result, and mention some simple corollaries. For general background on semi-
fields see [3]; for the basics on spreads, and particularly Desarguesian nets,
see [5]). We shall always use the following notation.

Notations
LV =rer

p?

D = 77, especially when a multiplicative structure on (.7-';,‘, +) is being
considered.

2. When (D, +, 0) is any finite semifield then its middle nucleus is defined

to be the field

where F, = GF(p), for a prime p; we often write

Nu(D,+,0)={feD:zo(foy)=(zo f)oyVz,yeD}

3. # = (V,T') is a shears or semifield spread on V whose component set
I’ consists of p™ + 1 mutually disjoint additive subgroups of V, each of
order p", that include X = 7 ® O and Y = O @ F} such that Y is
the shears axis (fixed by all the affine elations in Aut(V,T)).
The standard way of obtaining the shears spread # = (V,T') is to start
with any semifield (D, +,0) of order p”, where (D,+) = (F7,+), and then
todefinel'on V=D& D by

I' := {*y =mog” :meD}U{Y}

where “y = moz” always means {(z,m o z): ¢ € D}. Throughout the article,
we denote this spread by x(D,+,0). We can now define central units in
spread-theoretic terms.
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Definition 2.1 = = (V|T) is coordinatised by a semifield (D, +, o), relative
to the shears frame, (X,Y), and unit point u€V — (X UY) if there is an
additive bijection ¢ : V — V such that ¢ leaves X and Y invariant, and
induces a spread isomorphism from = to w(D,+,0), such that (u) = (e, €),
where e is the multiplicative identity of (D, +,0). If (D, +, o) turns out to be
commutative, we call u a central unit.

Now suppose GF(q) is the middle nucleus of 7, and so we may write the
order of 7 as gV, for some integer N > 1. Let H < Aut 7 denote the group of
middle-nucleus homologies of =, i.e., Fix(H) = Y, and H leaves X invariant.
So 7 contains a set of K = (¢¥ — 1)/(q — 1) distinct rational Desarguesian
partial spreads of degree ¢+ 1, say (Ay, Ag, ..., Ag), uniquely determined by
the following (inter-related) conditions: ‘

1. {X,Y} are components of every A;;

2. A,’ﬂAJ' = {X,Y} if 2 ;é],

3. For each choice of 1 = 1...K, H fixes each of the (¢"¥ — 1)/(q — 1)
Desarguesian planes of order ¢ that pass through the origin O and have
the same slope set as A;; (in particular the orbits of H on £, union
{X,Y} define the components of each A;).

The Desarguesian planes of order ¢ mentioned in 3 are precisely the
middle nucleus subplanes of the spread . If § is the affine part of any such
subplane, we define its interior by § = § — (X UY), and its X-edge by 6.
Thus H, the group of middle-nucleus homologies, is transitive on the slopes
of § and on the points of § = 6N X — {0}; thus the X-edges are precisely the
non-trivial orbits on X, of the middle-nucleus group H. We can now state
our main result.

Theorem 2.2 Let # = (V,I') be a commutative semifield spread (i.e the
corresponding translation plane admits an orthogonal polarity), relative to a
shears frame (X,Y’), with middle-nucleus GF(q) and order ¢~ .

Let (A1, A,,...,Ak) be the middle-nucleus partition of ' — {X Y}
into K = (g¢V — 1)/(g — 1) rational Desarguesian partial spreads of degree
g+ 1. Let C be the set of central units of =, relative to the given shears
frame (X,Y). Then there exists a unique system of middle-nucleus planes
(51, bay.n. ,5}() with ;€ A\; such that

1.

K A
c-Us
=1

2. Every X -edge X; (i.e. non-trivial middle-nucleus orbit on X ) is of form
X; = 6N X, for exactly oneicl... K.

209



JHA AND WENE: CENTRAL UNITS OF A SEMIEFIELD PLANE

Remark 2.3 We do not know whether the analogue of item (2.2.2) for the
Y -axis holds; i.e., whether the middle-nucleus planes whose interiors lie in C
induce a partition of the non-zero elements of the Y -axis.

The following result is an immediate consequence of the theorem (and actually
arises in its proof).

Corollary 2.4 Let = = (V,I') denote a commutative semifield spread of
order gV, with middle nucleus GF(q). Then every component W € T, distinct
from the frame components X and Y, contains exactly ¢ — 1 central units
and these together with O form an additive subgroup of W, of order q.

A special case is the following result, which could have been deduced
long before the completion of the proof of the theorem.

Corollary 2.5 Let G be the autotopism group of an affine commutative
semifield plane w'=, fixing the affine point O, and points X and Y on the
translation axis £,,. Let £ be any other line through O. Then G, is transitive
¢ — O only if the plane 7'~ is Desarguesian.

More general versions of the above corollary may be easily deduced from the
theorem. For instance the transitivity hypothesis of G; can be replaced by
|G| being divisible by a p-primitive divisor of p™ — 1, where p" is the order
of the plane. In particular,

Corollary 2.6 Suppose an affine translation plane n‘= of order p" admits a
collineation of order u, where u is a p-primitive divisor of p* — 1, that fixes at
least three slopes. Then the plane is Desarguesian, whenever , the projective
closure of w=, admits an orthogonal polarity.

3. Proof of the main result

We begin by listing our conventions regarding spread-sets. We only use addi-
tive spread-sets since we are only concerned with semifields; we always assume
that our spread-sets contain the identity matrix.

Definition 3.1 An additive spread-set M, of order p™, is an additive group of
p™ n X n matrices, over GF(p), such that I, M and all the non-zero matrices
in M are non-singular. The spread coordinatised by M is mp = (V,Tp4),
where the component-set I's¢ contains, besides Y, precisely the elements of
form %y = Mz” viz., , {(:c,M:c) : :cE]‘Z‘}, whenever MEM; so X and I =
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{(:c,:c)::c € .7::} are always in M.

The following definition recalls the essentially standard way of obtaining
a semifield from an additive spread-set M, and conversely of recovering this
additive spread-set from the semifield; M is often called the set of slope maps
of the semifield.

Definition 3.2 Given an additive spread-set M, of order p", and z,e€F} —
{0}, the unique member M of M such that Me = z is denoted by M.,
and Dive(M) = (D, +,0.) where a o, b = M{)(b) Va,b € D. Conversely, the
slope set of a semifield (D, +, 0) is defined to be the additive spread-set

{MeGL(n,p)U{O} : ImeD such that Mz = moz VeeD}

We now collect together some well-known and easily verifiable facts
related to the above definition.

Result 3.3 Let M be an additive spread-set of order p*, and ecD — {o}.
Then
1. Dive(M) is a semifield, with multiplicative identity e, coordinatising
the spread wap = (V,Tam), when the unit point corresponding to the
coordinatisation is chosen to be (e, e)€I,.
2. The slope-set of Div,(M) = M.
3. If (D,+,0) is a semifield, with multiplicative identity e, and M is its
slope set, then Div.(M) = (D, +, o).

Lemma 3.4 Let M be an additive spread-set. Then Div.(M) is a commu-
tative semifield if and only if:

(AB — BA)e = 0¥ A, BEM.

Proof. By result 3.3(1) Div.(.M) is a semifield; it remains to show that this
semifield is commutative precisely when the given condition holds. Since any
matrix X€M is of form M{*) (see definition 3.2), for some z€D, the given
condition is clearly equivalent to

(MEM — MIM)e = 0¥ a, beD

and hence to

M= M{DaVa b eD
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and by definition 3.2 this is equivalent to the desired result
a0.b=>bo.aV a,beD.

0

Lemma 3.5 Let M be an additive spread-set. If Div.(M) is commutative
then
(AB—BA)f =0V A BEM & fENu(Dive(M)).

Proof. Letting the commutative semifield Div.(M) = (D, +, o), result 3.3
implies M is its slope-set. Hence we obtain the following chain of equivalences:

(AB — BA)f =0V A, BEM

& (MEME - MEMENf=0Ve,yeD
& zo(yof)—yo(zof)=oVe,yeD
& zo(foy)—(zof)oy=o0Vaz,yeD, by commutivity of o
© f€Nm(D.)
and the lemma follows. 0

Lemma 3.6 Let (D,+,0) be a commutative semifield with multiplicative
identity e, and let . be the unique middle-nucleus subplane of =(D,+,0)
that contains the point (e, e), (with both X and Y among its components).
Then 7, the interior of 7.,consists entirely of central units, and £ N %, is the
full set of central units on the component £ of #(D, +, o), whenever éNw, # o,
i.e., whenever £ is a component of the subplane =..

Proof. Let M denote the slope set of (D, +,0), and so by result 3.3(3)
Dive(M) = (D, +,0). Now because (D, +, 0) is commutative, lemmas 3.4 and
3.5 together imply that Div¢(M) is commutative precisely when f€ N,,(D, +,0)-
{o}. But according to result 3.3 Div{(M) coordinatises the spread associated
with M when the unit point is (f, f), on the component “¢ = y”. Thus the
central units on the component “z = y”, of the spread #(D, +, 0), are precisely
the elements of the set {(f, ) : fEN,(D,+,0), f # o} = (7 — {O})N(“y =
z”). Now the full group of middle-nucleus homologies H, of 7(D, +,0), leaves
invariant the middle nucleus subplane ., and the H-orbit of “y = z” is
precisely the set of all components £ (distinct from X and Y') that meet =,
non-trivially. Thus £ N we — {O} consists of the full set of central units on ¢,
and the lemma follows. 0o
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Lemma 3.7 Let (D,+,«) be a finite semifield. If (D, +,*) can be recoor-
dinatised by a commutative semifield, then =(D,+,*) has a central unit of
type (c, c), for some ceD — {o}.

Proof. By hypothesis, there is a commutative semifield (D, +, o) such that
we have an additive bijection o : D @ D — D @ D, fixing the subspaces X
and VY, that induces a spread isomorphism from 7(D, +,0) to 7(D, +, %) and
hence satisfying the requirement:

a:(z,moz)— (G(z), Hmoz)) Vz,meD (1)
where G, H are resp. the action of @ on X and Y !. But letting M be defined
so that “y = m o 2” maps to “y = M(m) x £” under a we also have

(z,moz)— (G(z), M(m) * G(z)) Vz,meD 2
Hence by equations (1) and (2):

H(mogz) = M(m) xG(z)
and by the commutativity of m o z we therefore have
M(m)* G(z) = M(z) x G(m) (3)
Now choosing y so that M(u) = e, the identity for *, we have
G(z) = M(z) « G(p) V z€D
and hence equation (3) can be rewritten
M(m) + (M(z) * G(4)) = M(s) * (M(m) « G()) ¥ 2,meD  (4)

and now letting Ty represent the slope of the generic element d€D, relative
to *, we have:

(TnT, — T.T,,)G(p) = oV z,meD
and now by lemma 3.4 (G(¢), G(¢)) is a central unit of 7(D, +, *), as required.
]

Now consider any semifield spread = = (V,T'), coordinatisable by a
commutative semifield, and let ueV — (X UY) . Now regarding u as the
unit point, we have a coordinatising isomorphism ¢ : V — V| from 7 to some
7(D,+, x), where (D, +, %) is a semifield (but not necessarily commutative).
By the lemma above 7( D, +, ¥) has a central unit on the component “y = z”,
and so m has a central unit on the component containing u, for every © not
in X UY . Thus we have established the following consequence of the lemma
above:

1. It may be worth recalling that X and Y are components of both 7(D,+,*) and
x(D, +,0).
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Corollary 3.8 If = = (V,T) is a spread coordinatisable by a commutative
semifield, then every component £€I' — {X,Y} contains a central unit.

Now, under the hypothesis of this corollary, each component £cT' — {X,Y},
contains a central unit e, and by lemma 3.6 the interior of the unique middle
nucleus plane 7., through e and having X and Y as components, consists of
central units. Also if w4 is another middle-nucleus plane, whose interior con-
sists entirely of central units, then 7. and 7y cannot share any components,
distinct from X and Y, without contradicting the last part of lemma 3.6.
Thus the set of central units C, of the commutative semifield plane =, is given
by

2413

‘=

C =

=1

where each &; is the interior of a middle-nucleus plane §;, and every component
of m, distinct from X and Y/, lies in exactly one §;. Thus we have established
part 1 of theorem 2.2; in particular, we have K = (¢V — 1)/(g — 1),c.f.,
corollary 1.1.

We now turn our attention to determining the intersection of two such
8; ’s on X, and establish that (§;1X’) and (6;N X ) cannot share any non-zero
affine point, whenever ¢ # j. It is not clear to us whether a similar condition
applies to the “Y-edges” defined by the central planes.

Lemma 3.9 Let (D, +,0) be a commutative semifield with multiplicative
identity e. If (e, f) is a central unit of (D, +,0), then f€ N,(D, +,0).

Proof. Let M be the slope set of (D, +,0), and F' the slope of f, in M.
Now the linear bijection

Yv:DeD —- D@D

(z,9) — (Fz,y)
maps the component “y = Mz”, where MeM, onto the subspace “y =
MF~'z” and hence defines an isomorphism from the spread w, onto the
spread my, where ' = MF~1 such that (e, f) — (Fe, Fe). Thus (Fe, Fe)

is a central unit of m, on the component "y=x". So by lemma 3.4 applied
to N we have

[MF'NF™' - NFT'MF'| Fe = 0 VM, Ne M

Thus
MF*Ne=NFMeVM, NeM
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and now writing W = F~! we obtain
moW(noe)=noW(moe)Vm,neD

and hence

m o W(n) =noW(m)Vm,neD (5)
Now writing wy, = W(e) and choosing m = e we obtain
W(n) = now, YneD (6)
and so equation (5) becomes:
mo(now)=no(mow ) Vm,neD
and by the commutativity of o we have
mo (wyon) = (mow)on VYm,neD
Now w, €N,,,(D), and so equation (6) yields
W(n) =now €Nn(D,+,0) YRENL(D, +,0)
Thus W maps N,,(D, +,0) onto itself, and hence so does FF = W~ . Now
(e, f) = (e, Fe) = (e,n) 3 neN,(D,+,0)

as required. o

Corollary 3.10 Let # = (V,I') be a spread coordinatisable by a commu-
tative semifield. Suppose nq and n, are distinct middle nucleus subplanes,
through O, such that their interiors %o and %, are contained in the central
units of #. Then

o n 71N X=0

Proof. Without loss of generality we may assume that the component I,
i.e.,“y = z”, meets mp non-trivially; if not then replace the spread set M
defining 7 by a spread set ML~!, where L is the slope of some component
of mq, distinct from X and Y. Now choose e # o0 so that (e, e)enoN I. Thus,
since the interior of mo consists of central units, # may be identified with
n(D,+,0), a commutative semifield with identity e such that 7o = Ny, & Npy,
where N, = Ny, (D, 4+, 0), since any point (e, €) lies in a unique middle-nucleus
plane (relative to the axis X and Y'). Now, if the lemma were false, we would
have some (a,0)€nr;, where a€N,,. Hence 7, also contains a point (a,f)
where €D — N, since the interiors of the distinct central planes mo and
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are disjoint (c.f., theorem 2.2(1)). Now applying the middle-nucleus homology
& : (z,y) — (a™! o z,y), to the plane coordinatised by the commutative
semifield (D, +,0) we find that (e,a™! o 8)€ny, since 7, is invariant under
the middle nucleus homologies. But now, since (e,a"'8), is a central unit,
the lemma above yields a=! o B€N,,(D, +,0), contradicting the fact that
B & Nn(D,+,0). Hence the corollary follows. )

Thus in any commutative semifield spread =, of order ¢ and with
middle-nucleus GF(q), distinct middle-nucleus subplanes, whose interiors are
central, have disjoint X-edges. Since we have already seen (c.f., theorem
2.2(1)) that the number of “central planes” is precisely (¢¥ —1)/(¢ —1), and
this is also the number of non-trival middle-nucleus orbits on X, we conclude
that every X-edge is contained in a unique middle-nucleus subplane whose
interior consists of central units. This completes the proof of the second part
of theorem 2.2. a

We end by remarking that in a sequel [4] we shall demonstrate that,
in the even order case, the central units of commutative semifield planes are
partitioned by a set of translation ovals which, together with X and Y, define
a rational Desarguesian net.
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Partially sharp subsets of PI'L(n,q)

N. L. Johnson

Abstract

In this article, certain translation nets which are unions of subplane
covered nets are shown to be equivalent to partially sharp subsets of
PT'L(n,q). In particular, translation planes of order g* and arbitrary
kernel that admit two distinct Baer groups of order g— 1 with identical
component orbits are shown to be equivalent to partially sharp subsets
of cardinality q of PT'L(2, K) for some field K isomorphic to GF(q).

1. Introduction

Recently, a number of various connections have been established between
translation planes and other geometric or combinatorial incidence structures.
In particular, there are connections between flocks of hyperbolic quadrics in
PG@G(8,q) and translation planes with spreads in PG(3, q) such that the spread
is a union of reguli that share two lines. Similarly, partial flocks correspond
to translation nets whose partial spreads are unions of reguli that share two
lines.

It is well known that a Miquelian Minkowski plane can be defined using
a hyperbolic quadric in PG(3, q) and when this connection is made, the points
of the Minkowski plane are identified with the elements of PG(1,q)x PG(1, q),
the circles (conics) correspond to the elements of PGL(2,q) and a flock cor-
responds to a sharply transitive subset of PGL(2, q).

Recently, Knarr [10] generalized this idea and showed that a sharply
transitive subset of PT'L(2, q) produces a translation plane of order ¢* whose
spread is a union of derivable partial spreads that contain two lines but all of
these do not necessarily lie in the same projective space.

In [8], it was shown that a partial hyperbolic flock of deficiency one
(missing exactly one conic) corresponds to a translation plane with spread
in PG(3,q) that admits a Baer group of order ¢ — 1. Note that a partial
hyperbolic flock of deficiency one corresponds to a partially sharp subset of
PGL(2,q) of cardinality g (see definition 2.1). One of the main objectives of
this article is to show that partially sharp subsets of PT'L(2, q) of cardinality
g produce translation planes that admit a Baer group of order ¢ — 1 thus
extending the work of Knarr mentioned above. Note that the constructed
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translation planes will not necessarily have spreads in PG(3, q).

More generally, we want to study translation nets that can be con-
structed from partially sharp subsets in PI'L(n, q) and consider their possible
extensions. One main problem would be to determine conditions to impose on
a translation plane of order ¢? in order that there is a corresponding partially
sharp subset of PTL(2, K) for some field K isomorphic to GF(q). We shall
state our main results in the next sections. Concerning characterizations of
translation planes by groups, our nicest result involves planes admitting Baer
groups.

Theorem 1.1 (see theorem 3.6) (i) Let = denote a translation plane of order
q? and arbitrary kernel. If # admits two distinct Baer groups of order q—1 that
have the same orbits on the line at infinity then there is a field K isomorphic to
GF(q) such that there is a corresponding partially sharp subset of PT'L(2, K)
of cardinality q.

(ii) If S is a partially sharp subset of PT'L(2,q) of cardinality q then
there is a translation plane of order q% that admits two distinct Baer groups
of order g — 1 such that the groups have the same orbits on the line at infinity.

In section 2, we give the general connections between translation nets
of a particular type and partially sharp sets. In section 3, we show how to
connect translation nets that admit certain collineation groups with partially
sharp sets of a particular type. In section 4, we note how results on net
extension produce results on extensions of partially sharp sets. In particular,
we show the following theorem.

Theorem 1.2 (see theorem 4.2). If P is a partially sharp subset of PT'L(n, q)
for n > 4 of deficiency one, then P may be extended to a sharply 1-transitive
subset of PT'L(n, q).
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The author is indebted to Professor Kathleen O’Hara for helpful conversations
with regards to this article. In particular, the idea for the proof of theorem
2.6 is due to the interaction.

2. Partially sharp subsets of PI'L(n,q) and their
corresponding translation nets

In this section, we lay down the general foundation for the connections be-

tween partially sharp subsets of PT'L(n, q) and translation nets admitting cer-

tain collineation groups. In particular, we are interested in showing that par-

tially sharp subsets of PT'L(2,q) of cardinality q produce translation planes
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of order q? that admit two Baer groups whose orbits on the line at infinity
are equal.

Definition 2.1 Let S be a set of permutations on a set X. S shall be said
to be partially sharp if and only if for all z,y in X and for all g,h in S then
zg = zh if and only if g = h and zg = yg if and only if z = y. If | X| is finite,
a partially sharp subset of cardinality | X| is said to be sharply transitive.

Theorem 2.2 (1) Given a partially sharp subset S of PT'L(n,q) acting on
the points of PG(n—1,q) of cardinality t < (¢"—1)/(q—1), there is a partially
sharp subset of I'L(n, q) of cardinality t(q — 1) which defines a translation net
Ngs of order q™ and degree t(qg—1)+2. The net N is the union of t translation
nets N;, i =1,2,...,t of degree ¢+ 1 and order q" which mutually share two
components L, M.

(2) Furthermore, each net N; is a subplane covered translation net and
corresponds to a regulus in some projective space PG(n — 1, K;) where K; =
GF(q).

(3) The net Ng admits two collineation groups Hyp, Hp of order ¢ — 1
which fix the two common components where H, fixes L pointwise, and Hypy
fixes M pointwise. (Hy,, Hp) fixes each net N; so the groups Hy, and Hyp have
the same orbits on the components of Ng.

Proof. The proof is similar to the one of (2.1) in [7], so we shall give only
a sketch. For each element g € S choose a preimage gt within I'L(n,q).
Represent g* by the mapping

(zl’ T2,y ,:c,,) - (mgM’z;M’ s ’m:M)M

where oy € Aut GF(q) and M € GL(n,q).
Note that any other preimage would be represented by

(Z1, 22, -5, Tn) = (1M, ..., 2oM)Mul,

for some u € GF(q)*.

Form the partial spread N, = {y = z°MMvl,, ¢ = 0, y = 0|jv €
GF(q)*} wherez = (z1,%3,...,Tn), M = (2™,...,27M), ¥y = (¥1,¥2,-- -, Yn)-

It follows from Johnson [7] that this is a subplane covered net of degree
g + 1 and order g". It follows from [4] that this net is a regulus net and
corresponds to some regulus in an associated projective space PG(n — 1, K,)
for some field K, = GF(q).

Furthermore, Ns = U{N,||g € S} is a translation net of degree |S|(q —
1) + 2 and degree ¢". Note that the indicated semilinear maps acting on the
nonzero vectors of a n-space over GF(q) form a partially sharp set in I'L(n, q).
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Finally, note that the components L, M arex =0,y =0 and Hy = H,
is given by ((z,y) — (z,y)(ul,, L.)||u € GF(q)*) and that Hy = H, =
((z,9) = (z,¥)(In,ul,)||v € GF(q)*). Note that each group fixes each net
Ny for g € S. Also, note that another set of preimages of elements of S
produces the same translation net Ng. 0

Before we give our main results, we prove two results on sets of mutually
disjoint subspaces which may be of independent interest.

Theorem 2.3 Let V,, denote a 2n-dimensional vector space over GF(q)
for n a positive integer. Let L and M be two disjoint n dimensional vec-
tor subspaces and enumerate the 1-dimensional subspaces on L and M by
(Xl = 1,2,...,(" - 1)/(a — 1)} and {¥illi = 1,2,..,(¢" — 1)/(q — )}
respectively. Let o be any permutation of {1,2,. .., (¢* — 1)/(qg — 1)}. Then
R, = {{X, Yoi))lls = 1,2,...,(¢" — 1)/(g — 1)} is a set of mutually disjoint
subspaces which cover L and M.

Proof. Choose a basis for L and M so that L is represented by
{(z1,22,...,24,0,0,...,0)} and M by {(0,0,...,0,%1,¥2,...,%n)} for all
zi,yi € GF(q) for ¢ = 1,2,...,n. Let H, and Hys be represented exactly
as in the proof to theorem 2.2. Note that Hy, and Hj, fix each 2-dimensional
subspace (Xj, Y;) generated by the 1-dimensional subspaces X; and Y; so that
(X:,Y;)—(LUM) is an orbit of length (g—1)* under the group of linear trans-
formations (Hy, Has). This implies that any two distinct such 2-dimensional
subspaces can intersect only on L or M. Hence, if o is a permutation of
{1,2,...,(¢"—1)/(g—1)} then (X, Y,(;)) and (X, Yo(;)) for i # j are disjoint
2-dimensional subspaces. So, R, = {(X;, Yoi))|li = 1,2,...,(¢" — 1)/(¢ — 1)}
is a set of mutually disjoint 2-dimensional subspaces which covers L and M.
]

Theorem 2.4 (1) Let V,, be a vector space of dimension 2n over K =
GF(q). Let Ny be a translation net whose points are the vectors of Vi,
is of degree q + 1 and order ¢q" such that the components correspond to
a (n — 1)-regulus in PG(2n — 1, K,) for some field K, = GF(q)) possibly
distinct from K. Assume that L, M are two components of N, which are
K-subspaces. If the subplanes of N, incident with the zero vector are 2-
dimensional K-subspaces, enumerate the 1-dimensional subspaces on L, M as
in (2.2). Then the set of subplanes of the net Ny, which contain the zero vector
is {{Xi, Yo)lli = 1,2,...,(¢™ — 1)/(q — 1)} where 7 is some permutation of
(1,2, ("~ 1)/(q - D}

(2) Let {Ni||k =1,2,...,t} be a set of translation nets of degree g + 1
and order q" whose points are the vectors of a 2n-dimensional subspace over
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a given field K = GF(q) and where Ny corresponds to a (n — 1)-regulus in
some projective space PG(2n — 1, K}) for Ki = GF(q) possibly distinct from
K. Assume that the nets mutually share exactly the components L, M, that
these components are n-dimensional K-subspaces, and that the subplanes
of Ny incident with the zero vector are 2-dimensional K -subspaces for each
k= 1,2,...,t. Let {m||lk = 1,2,...,t} denote the set of permutations of
{1,2,...,(¢" — 1)/(g — 1)} corresponding to {Ni} as in (1). Then {n,} is a
partially sharp subset of permutations of {1,2,...,(¢" —1)/(g — 1)}.

Proof. The distinct 2-dimensional K-subspaces which are subplanes of N
are disjoint. Hence, given a 1-dimensional subspace X; on L, there is a unique
1-dimensional subspace Y; on M such that (X;,Y;) is a subplane of Ni. Since
the set of subplanes of N} incident with the zero vector partitions L and M,
the mapping ¢ — j defined as above is onto and thus produces a permutation
e of {1,2,... )(qn - 1)/(‘1 - 1)}

Now let N and N, denote any two translation nets and assume that the
associated permutations 7 and 7, share an image; that there exists an integer
1 such that 7x(2) = 7,(¢). Then the nets also share a subplane (X;,Y.,(;)) =
(X, Y..w:)) contrary to the assumption. O

Theorem 2.5 Let S be a partially sharp subset of PI'L(n,K), for K =
GF(q), of cardinality t and Ng the corresponding translation net of degree
t(q — 1) + 2, where Ng = UN; for i = 1,2....,t and the nets N; are the
associated translation nets of degree ¢+ 1 which share two components L, M.
Then there are (4" — 1)/(q — 1) — t = s distinct sets R; , % =1,2,...,s such
that, for each i, R; is a set of (¢" — 1)/(q — 1) mutually disjoint 2-dimensional
K -subspaces which cover L and M and such that the subspaces are disjoint
from the components of Ng — {L, M}.

Proof. By theorem 2.4(2), corresponding to the nets Ni is a set of ¢ permu-
tations 7 for k =1,2,...,t of {1,2,...,,(¢" —1)/(q¢ — 1)} such that {7} is
a partially sharp set of permutations. Note that this is equivalent to the fact
that the matrix [7x(z) = ax;] is a t X (¢"—1)/(¢— 1) partial Latin square. This
partial Latin square may be extended to a Latin square (see e.g. [1] ) so that
there is a set of s permutations 7 for k =t+1,...,(¢" —1)/(¢—1) such that
each set T; = {7t = 1,2,...,¢,andi =j} for t +1 < j < (¢" —1)/(g — 1)}
forms a partially sharp set of permutations of cardinality t+1.

Choose any permutation 7; and form the corresponding set R, of 2-
dimensional subspaces = {(X;,Y,,))|ls = 1,2...,(¢" —1)/(g — 1)}. The sub-
planes are mutually disjoint by theorem 2.4. Since the set Tj is partially sharp,
the only possibly intersections of subplanes are on L or M. m|
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Theorem 2.6 Assume the conditions of theorem 2.5. If a set R; is the set
of subplanes incident with the zero vector of a translation net N, of degree
g + 1 and order q® which contain L and M as components then there is a
partially sharp set St of cardinality t + 1 of PT'L(n,q) which contains S.

Proof. The groups Hy, Hy fix each subplane of R;. Let g € (Hr, Hy) and
consider the translation net Nj,,g. This is a translation net whose components
are covered by the same subplanes as N; ;. This means the set of components
of N}, and of N;,,g cover the same affine points. Hence, this implies that the
two subnets of degree g — 1 defined by the respective components not equal
to L or M must cover each other. This implies that the two subnets of degree
g — 1 and order g™ are replacements of each other. However, by [3], this can
occur only if the nets are equal. Hence (Hy, Hy) is a collineation group of
Ny

Represent the components L and M by (z = 0) and (y = 0) respectively.
Furthermore, represent the components of Nj,, by (z = 0), (y = 0) and
y = W where {W} is a set of cardinality ¢ — 1 of nr x nr matrices over the
prime field GF(p) where K = GF(q) and q = p". Clearly, the matrices and
their distinct differences are nonsingular.

Since Hj, and Hps are both regular on {y = W}, we assert that, as a
linear transformation, W must normalize {ul,||u € K}. Indeed, we still may
represent Hy, = (Diag{ul,, I.}||u € K*) and Hy = (Diag{I,, ul.}||u € K*)
even though at this point, we do not know the connection of y = W with
T'L(n, K). There is a subgroup of (Hy Hpy) of order g—1 which leaves y = zW
invariant.

Considering ul,, as a matrix over GF(p), we have that there exists
a subgroup whose elements have the form Diag{ul,,vI,} as matrices over
GF(p) which leave y = zW invariant. This implies that v L, Wvl, = W so
that WoI, W~ = ul,,. Suppose, for some u, the corresponding v = 1 in the
stabilizer of y = zW. Then this element fixes M pointwise so that no other
component can be left invariant since otherwise there would be points fixed
by Hjs which lie on a component not equal to M. Similarly, no two u’s or no
two v’s in distinct elements of the stabilizer of y = zW can be equal. This
implies that W{ul,|ju € K}W ™! = {v],|lv € K}.

Hence, W normalizes the field {ul,||u € K}. Since the automorphisms
of K extend to the automorphisms of {ul,}, it follows that Wul, = v I,W
for all u € K and for some ¢ € Aut K. Moreover, since y = zW — y =
z Wul, for all u € K* by Hyy, it follows that there is exactly one automor-
phism of K associated with the net N:+l.

We have the n-vectors (21,23, ...,2,) = z over K and considering z as
a nr-vector over GF(p), we have that (z,zW) is a vector of some subplane
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and hence there is a unique n-vector (y1,...,yn) = zW over K. That is, W
permutes the set of n-vectors over K. Hence, it follows that W is a semilinear
mapping over K; W may be considered within I'L(n, K).

So, N{,, may be represented by y = 0, z = 0, y = z°?Jul, for all
u € K and o5 € Aut K where J € GL(n,K). (Define g(z) = zW. Then
g(zu) = g(zul,) = zul,W = sWu’l, = g(z)u’l, = g(z)u’. Since g is
clearly additive, it follows that g is semilinear.)

It now follows that S U {z — z°?J} = S* represents a partially sharp
subset of PT'L(n, q) since the corresponding set in I'L(n, K') determines a net
of degree (t + 1)(g — 1) +2. o

Corollary 2.7 (1) Given a sharply transitive set S in PT'L(2,q) of cardinal-
ity t, there corresponds a translation net Ng of degree t(q — 1) + 2 and order
q? which consists of t subplane covered translation nets of degree q + 1 and
order q? that mutually share two components L and M. There exist (g+1)—1
distinct translation nets of degree g+1 and order ¢*>, R;, 1 =1,...,(q+1)—t,
such that R; U{Ns—{L, M}} is a translation net of degree (t+1)(q—1)+2.
This translation net contains L and M as Baer subplanes and admits two
Baer groups of order g — 1, Hy,, Hpyy which have the same component orbits.

(2) If, for some+, R; is a derivable net then there is a sharply transitive
set ST in PT'L(2,q) containing S of cardinality t + 1 and corresponds to
(produces) the translation net E; U Ng — L, M, where E; denotes the net
derived from R;.

(3) If there exists a partially sharp subset of PT'L(2,q) of cardinality q
(deficiency one) then there corresponds a translation plane of order ¢q* which
admits two Baer groups of order q— 1 which have the same component orbits.

(4) If the translation plane of order q* of (3) is derivable (by the ex-
tended net) then the partially sharp subset may be extended to a sharply
transitive subset of PT'L(2, q). Conversely, if the partially sharp subset may
be extended then the corresponding translation plane is derivable.

Proof. The only remaining part is to prove (4). If a partially sharp subset of
cardinality q can be extended then there is a translation plane corresponding
to this extension and contains the translation net of degree q(q — 1) + 2.
And, there is a translation plane admitting two Baer groups from (3). These
two translation planes share the net minus the two common components L
and M (these appear as subplanes in one translation plane) so that the two
remaining nets of degree g+ 1 in the two planes must be replacements of each
other. By [11], the two translation planes are either equal or one is derived
from the other. The planes are not equal since L, M are components of one
and Baer subplanes of the other. o
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3. Two Baer groups

In this section, we consider translation nets of degree (t + 1)(¢ — 1) + 2 and
order ¢? that admit two distinct Baer groups of order g—1 that have the same
component orbits. We shall show that there exists a field K = GF(q) and
a corresponding partially sharp subset of cardinality ¢t in PI'L(2, K). Our
main result shows that translation planes of order ¢? that admit two Baer
groups with the same orbits on the line at infinity correspond to partially
sharp subsets of PT'L(2, K) of cardinality q for some field K isomorphic to
GF(q). We first note the following theorem.

Theorem 3.1 ([5], [6]) (1) Let N be a translation net of degree q + 1 and
order q? which admits a Baer group B of order ¢ — 1. Then the subplane
Fix B which is pointwise fixed by B is Desarguesian and there is another
Baer subplane incident with the zero vector which is fixed by B. We shall
denote the second fixed subplane of B indicated above by coFix B.

(2) If there exists a third subplane in N then N is derivable.

Theorem 3.2 Let N be a translation net of degree (t+1)(q—1)+2 fort a
positive Integer which admits two distinct Baer groups By, B, of order ¢ — 1
in the translation complement. If the Baer groups have the same component
orbits then Fix B; = coFixB; for1 # 7,4,7 = 1,2.

Proof. By the assumptions, the set of fixed components of B, and the set
of fixed components of B, are equal. Let D denote the net of common fixed
components. Assume that Fix B, # coFix B;. Then Fix B, or coFix B; must
be moved within D to a third Baer subplane. By theorem 3.1, it follows that
the net D is derivable. Moreover, the g + 1 Baer subplanes of D incident with
the zero vector have orbit structure {1, q} or ¢ + 1 under (B, B,).

If (B, B;) is transitive on the subplanes, we may use the argument of
[2](see (1.1)), to show that that there is a Sylow p-subgroup of order g for
p" = q. Thus, in either case, there is a Baer group of order q. However, since
the component orbits of B; and B, are the same, the stabilizer of a component
C not in the net D has order |(By, B,)|/(g —1). Hence, there is a Baer group
of order g which fixes a component C not in the net D. Since C is a vector
space, there must be fixed points other than the zero vector in C. It follows
that the Baer group of order g fixes all affine points, a contradiction. O

Lemma 3.3 ([5] pp. 33-37) Let N be a translation net of degree q + 1 and
order q® which admits two Baer groups B;, for i = 1,2 of order ¢ — 1 such
that Fix B; = coFix B; for © # j;t,j = 1,2. Then there is a representation
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for N = {(z1, %2, 1, ¥2)||:, yi are r-vectors over GF(p) for p” = q,1 = 1,2}
such that

(i) Fix B, = {(0, z2,0,y2)||z2, y2 are r-vectors over GF(p)} and coFix B; =
{(z1,0,¥1,0)||z1,y1 are r-vectors over GF(p)};

(ii) the components of N have the form

PR I A
e=0 v=21 4 4,

where A, and A4 are 2r X 2r matrices over GF(p). The sets {A,} and {A4}
corresponding to the components of N are both irreducible and the respective
centralizers Ky, K, are fields of matrices isomorphic to GF(q).

(i)

1000 DO0O0O
0C 00 07100
Bi={| g o 1 o |ICEK) and Bo=(| o o o o |IDEK).
000C 000 I

K, is the kernel of Fix B, = coFix B, and K, is the kernel of ‘coFixBl =
Fix B,.

Assumptions

In what follows, we assume that N is a translation net of order ¢ and degree
(t+1)(g—1)+ 2 for ¢t a positive integer which admits two Baer groups B, B,
of order ¢— 1 such that the component orbits of the two groups are the same.

We started with a 4r-dimensional vector space over GF(p) for p" = ¢
and determined a basis E = E; U E, U E3U Ey with E; = {ey,...,e}, E2 =
{er+l> s >e2r}> E; = {32r+l> P ,63,.}, E, = {e3r+l> ce >e4r}' In this basis,
Fix By = (E1U E3) and Fix B, = (E, U E,). Moreover, Fix B, may be consid-
ered as a 2-dimensional vector space over an r X r matrix field K4 = GF(q)
so that Fix B; = {(1,0,¥1,0)} with respect to E such that z, = ¥] zq;e;
and y1 = Y] yii€arti for z1i, y1; € GF(p). We are taking a basis {f1, fa}
for Fix B, over K, so that f; € (E;) for © = 1,3 so we may simultaniously
consider a vector (21,0, y1,0) as a K,-vector or a GF(p)-vector.

Similarly, we may consider Fix B, = {(0, 2,0, y2)} with basis E, U E4
and consider a vector (0,z,,0,y2) as a Kj-vector or as a GF(p)-vector.

Now consider the ordered basis B = E, U E3 U E; U E,4. In this basis,
Fix By = {(z1,%3,0,0)||z; € K4, for 1+ = 1,2} and Fix B; = {(0,0,y1,y2)||v: €
K, fori=1,2}.

Let o be any isomorphism from K; onto K;. We then can consider
the 4r-dimensional vector space over GF(p) as a 4-dimensional vector space
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over K, by taking as vectors the GF(p)-vectors (1, Z2,¥1,y2) such that z; €
K,, y; € K,, for 1 = 1,2 and define scalar multiplication by D € K4 by
(21,%2,%1,¥2)D = (21D°,2, D%, 94, D, y2 D).

In particular, since K; and K, are r x r matrix fields over GF(p), there
is a matrix T such that 771K T = K,.

Let W be a fixed 2r-dimensional vector space over GF(p) and iden-
tify Fix B; and Fix B, as 2r-subspaces with W. Then the underlying 4r-
dimensional spaceis W @ W.

Let T’ denote the subnet whose partial spread is the set of components
which are not fixed by B; or B;. Then I' U {Fix By, Fix B;} = I't is a net
upon which the linear group (B, B,) acts as a collineation group.

Now change bases by é 31 = g. The translation net I'* is mapped
onto an isomorphic net I'* g which admits the collineation groups B, and BY.

Hence, we have shown the following lemma.

Lemma 3.4 Let I' denote the subnet which does not contain the fixed com-
ponents of B, or B, and let 't = T'U{FizB,, FizB,}. Change basis by B as
above. Then, by identifying the GF(p)-subspaces Fix B, and Fix B,, there is
a basis change g so that we may take K, = K, and the net 't g is isomorphic
to I't.

Theorem 3.5 Let N be a translation net of order q°> and degree t(qg— 1) +2
for t a positive integer that admits two distinct Baer groups By, B, of order
g — 1 and which have the same component orbits. Let 't denote the subnet
with partial spread the union of {Fix B;,1 = 1,2} and the set of components
not fixed by B;. Then there is a net R isomorphic to I't and a matrix field
K = GF(q) such that the net R admits the collineation groups

C 00 0]
0 C 00
[0 0 0 T|
(7T 0 0 0]
01 0 O
L0 0 0 C |

and the net R has components of the form ¢ = 0, y = 0 (Fix B, and FixB,)
and y = zM where {M} is a set of nonsingular 2r x 2r matrices over GF(p)
such that the differences are also nonsingular. Corresponding to each com-
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ponent y = M is a semilinear mapping in T'L(2, K') and the set of all such
semilinear mappings forms a partially sharp subset of cardinality t(g —1) in
T'L(2,K). Modulo the K-scalar mappings, there is a corresponding partially
sharp subset of cardinality t of PTL(2,K), K = GF(q).

Proof. It is easy to verify that the components have the basic form y =
zM. Let y = zJ be any such component. Since we have assumed that the
component orbits of the Baer groups acting on the original translation net are
equal, it follows that the groups have the same orbits on I'*. Since we define
the components of 't g to be the images of the components of I't, it follows
that the groups have the same orbits as acting on I'* g but with respect to a
different basis.

Hence, for a component y = zJ, there is a subgroup of (B, A; = BY)
of order ¢ — 1 which leaves y = zJ invariant. If an element

D 0 0 0
0 D0 O
0 0 C O
0 0 0 C

leaves y = zJ invariant then

D! 0 Cc 0
RS RIEE

Now D = I if and only if C = I in such an element as such elements
fix exactly £ = 0 or y = 0 pointwise or are trivial. Similarly, it follows that
no two distinct elements in the subgroup which fixes y = zJ can have the
same (1,1) = (2,2) entries. Thus, there is a 1-1 and onto mapping o from
K* onto K* defined by

2 8] (28]

where
D 0 0 O
0 D 0O O
0 0 C 0
0 0 0 C

leaves y = z.J invariant. It is easy to verify that if we define o ;(0) = 0 then o;
becomes an automorphism of K. For example, that o;(CD) = ¢;(C)os(D)
follows from the observation that

¢cp o)., ,Jco]l...[D 0].,
J[ h CD]J —J[O C]J J[O D]J.
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Since J acts as a linear transformation on the 2r-space over GF(p), W,
and we are identifying z = 0 and y = 0 with W, J permutes the K-vectors of
z = 0 and acts additively. Hence, if {f1, f2} is a K-basis of W, we consider
fi as a 2r-vector over GF(p) in some suitable basis. The images f;J are 2r-
vectors which, in turn, define 2-vectors over K and in the same basis {f1, fa}

provide a 2 x 2 matrix over K.
Now, define A(z) = zJ. Then

h(:cD):h((:cl,:cz)[IO) g])ﬂ[lo) 10)]1

which equals
Dm0
aJ [ 0 D ]
for some automorphism 7 of K so that h(zD) = h(z)D", h(z+2z) = h(z)+h(2)
so that h is a semilinear mapping. Furthermore, k is in I'L(2, K) since J is
nonsingular. Note that the images of y = zJ under the group are
D o0
y=aJ [ 0 D ]
for all D € K* so that there are exactly ¢(q — 1) semilinear mappings which

form a partially sharp subset of I'L(2, K) since there is an associated net and
we may represent the net R in the form

D 0

— — — g
z=0, y=0, y==z J[ 0 D}
for all D € K* and for exactly ¢ nonsingular matrices J. It follows immediately
that the set {X — X°7J} defines a partially sharp subset of cardinality ¢ of

PTL(2,K) for K = GF(q). o

Theorem 3.6 There is a 1-1 correspondence between partially sharp subsets
of PT'L(2,q) of deficiency one and translation planes of order q® that admit
two distinct Baer groups of order q — 1 which have the same component
orbits. If B is one of the Baer groups of order ¢ — 1 then any component
orbit union the subspaces Fix B and coFix B is a derivable partial spread.
The net containing Fix B is derivable if and only if the partially sharp subset
of PT'L(2,q) can be extended to a sharply transitive set.

Proof. We have seen that given a partially sharp set of cardinality g in
PT'L(2,q), there is a corresponding translation net of degree g(q — 1) + 2

and order g2 consisting of ¢ subplane covered translation nets that share two
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components L and M. Furthermore, there is a set £ of mutually disjoint
2-dimensional subspaces such that the subspaces are disjoint from the com-
ponents different from the common components L and M. Hence, there is
actually a spread of g(¢ — 1) + ¢ + 1 = ¢* + 1 components. Note that this
translation plane admits two Baer groups which have the same component
orbits. If the added net is derivable, we have seen above that the partially
sharp set of cardinality q can be extended to a set of cardinality 4 + 1 which
is then sharply transitive.

If 7 is a translation plane of order g* which admits two Baer groups
of order ¢ — 1 with the same component orbits, let I'* denote the net which
consists of the components which are not fixed by a Baer group B union
{Fix B, coFix B}. By theorem 3.5, there is an isomorphic net R and a field
K = GF(q) which produces a partially sharp subset in PT'L(2, K) of cardi-
nality g. Also, recall the isomorphism g leaves Fix B and coFix B invariant.
Now assume that the plane = is derivable by the net D containing Fix B. De-
rive ™ by D to obtain the translation plane 7p containing Fix B and coFix B
as components and note that mp contains the net I't as a subnet. Let E de-
note the derived net of D. It follows that mpg is also derivable by the net Eg
and contains the net R = I'tg as a subnet. The group B acts as a homology
group of npg and the (¢ — 1) components of xpg which are not in R are in
an orbit under B. The argument in theorem 3.5 shows that corresponding to
this orbit of components is a set of ¢ — 1 semilinear mappings over K of the
form

.| C 0
X-X"J [ 0 C }
for all C € K*.

Hence, modulo the scalar mappings, there is exactly one additional
semilinear mapping in PT'L(2, K) and this mapping extends the original set
corresponding to R. a

By the results of sections 2 and 3, we have completed the proof to

theorem 1.1.

4. Extensions of partially sharp subsets

There are non-Hall translation planes of order ¢> = 16, 25, and 81 which
admit two Baer groups of order ¢ — 1 which have the same component orbits.
These planes produce partially sharp subsets of PGL(2,q) of deficiency one
and are studied more generally in [2]. It is not always the case that the subsets
can be extended to sharply transitive subsets of PT'L(2, q) and none of these
can be extended within PGL(2, q). We shall see that the situation for partially
sharp subsets of deficiency one in PI'L(n, q) is quite different for n > 3.

Let S be a partially sharp subset of PI'L(n, q) of cardinality ¢. We have
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seen that to extend S requires that some set of 2-dimensional subspaces of
the associated translation net should be the set of subplanes incident with
the zero vector of a subplane covered net of degree ¢ + 1. But, we can say a
bit more on the extension of the associated translation net.

Theorem 4.1 Let S be a partially sharp subset of PT'L(n, q) of cardinality ¢
and let I't denote the associated translation net of degree t(q— 1)+ 2 which is
the union of t subplane covered translation nets of degree g+ 1 that mutually
share two components L and M. Let the two groups (homology groups) of
order g —1 be denoted by Hy, and Hyy. KTt can be extended to a translation
net of degree at least t(q— 1)+ 2 then there is an extension I'* (L)(T'* (M)) of
degree (t+1)(q—1)+2 which admits Hy(Hur) as a collineation group and such
that the net is a union of (t41) subplane covered nets. If T'*(L) = 't (H) then
this translation net corresponds to an extension St of S which is a partially
sharp subset of PT'L(n,q) of cardinality t + 1.

Note, for example, if y = z M is an added component and M normalizes
the field of matrices defined by GF(q) then the net would admit both groups
so that T't(L) = 't (M) in this case.

Proof. Suppose that N is any net extension of I't. Choose L and M as
z = 0 and y = 0 respectively and decompose as in section 3 so that the
components of ['t have the form y = 2" Wul,, where W is an n x n matrix
over GF(q), ow € Aut GF(q) and u € GF(q)*. If there is a net which extends
['t then there is a component which may be represented by y = 2T for some
matrix T over the prime field GF(p) where p* = g. It is easy to verify that
the net Ny = {z =0, y =0, y = «Tul,,Yu € GF(q)*} is a subplane
covered translation net of degree g + 1 so that T'*(M) = 't U Ny is an
extension of degree (t 4+ 1)(g — 1)+ 2 which admits Hys. Similarly, N, = {z =
0, y =0, y = zul,TVu € GF(q)*} is a subplane covered translation net and
I't(L) = 't U N, admits Hy, as a collineation group. If these two nets are
equal then the net admits the groups H; and H)ys so that the groups have
the same component orbits. We may then apply the main results of sections
2 and 3 to extend the partially sharp subset of PT'L(n, q). m|

Suppose we consider the problem of whether a partially sharp subset of
cardinality ¢ of PT'L(n, q) can be extended to a sharply transitive set. Since
a sharply transitive subset corresponds to a translation plane, we see that
this problem is essentially a question of extending a partial spread defining
a translation net to a spread defining a translation plane. The corresponding
translation net has deficiency ¢ — 1 in this case.

Let f(z) = (2 + 3 + 2z(z + 1))z/2. By [3], if ¢" > f(q — 2) then the
translation net may be extended to a unique affine plane. Furthermore, by
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[9](3.2), (3.3) the affine plane must be a translation plane.

By theorem 4.1, if I't is the translation net of order ¢™ and degree
(g"—1)/(g—1)—1)(g—1)+2 (deficiency g —1) corresponding to the partially
sharp subset of PT'L(n, q), assume that ¢g" > f(q —2) and let 7 be the unique
translation plane which extends I'*. If y = zJ is any component of # — I't
then there are two extensions I'* (M) and I'*(L) containing y = zJ which
then must be equal so that 7 admits the collineation groups Hys and Hr. By
theorem 4.1, there is a corresponding extension of the partially sharp subset
of PT'L(n, q) to a sharply transitive set. Thus, we have the following theorem.

Theorem 4.2 Let S be a partially sharp subset of PT'L(n,q) of deficiency
one. If g = 2,34 0or5andn =3 orifn > 3 then S may be extended to a
sharply transitive subset of PT'L(n, q).

Proof. We need only to show that ¢" > f(¢—2) =(¢—2)((¢ —2)*+3+

2(q —2)(q — 1))/2 which is equal to (¢* — 6¢° + 14¢* — 15 + 6)/2. Clearly, q™

is larger than this number if n > 4, and a short calculation shows that ¢* is

larger when ¢ =2,3,4 or 5. m|
This proves also theorem 1.2.
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Partial ovoids and generalized
hexagons

G. Lunardon *

Abstract
An alternative construction for the *Dy(g)-hexagon (g odd) is given
using the algebraic variety which represents a regular spread onto the
grassmannian of the planes of PG(5, q).

1. Introduction

Let V be a vector space over the field F. We will denote by PG(V, F) the
projective space associated with V. For each vector subspace A of V, we will
denote by P(A) the projective subspace of PG(V, F) associated with A. If
A =< v > has dimension 1, we will indicate with P(v) the point of PG(V, F)
associated with A. If V has finite dimension n over the field F' = GF(q), we
will write PG(n, q) instead of PG(V, F).

Let W(2n+1, q) be the polar space arising from the symplectic polarity
of PG(2n + 1, q) associated with the non-singular alternating bilinear form
(, ) of V. A partial ovoid O of W(2n+1, q) is a set of pairwise non-orthogonal
points. A partial spread P of W(2n+1, q) is a set of pairwise disjoint maximal
totally isotropic subspaces. Assume P is of size g™ 4+ 1 such that each point
of O belongs to an element of P. We will denote by T, the unique element
of P incident with the point p of O. If p; = P(v;) (2 = 1,2, 3,4) are mutually
distinct points of O, then let

4

Q(p1,P2,P3,P4) = {P(Eg zv): Y, zzi(vi,v;) = 0},

i.4=1,i#

1=

C(pl7p27p3) = Q(PI;PZ;PS;POO < P1,P2,P3 > .
Let us suppose that:
(a) < Tpy,p2 > NO = {p1,p2};
(b) no plane contains four points of O;
(c) aline of W(2n + 1, q) joining a point of Ty, to a point of T}, is not
incident with ps;

*. The author has a partial financial support from the Italian M.U.R.S.T.
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(d) if » €< p1,p2,p3 > NTy,, then r does not belong to C(p:,p2, p3);

(e) no five points of O belong to Q(p1,p2,Ps, pa)-

Let W(2n + 3, q) be the polar space arising from a symplectic polarity
1 of PG(2n + 3,q). If z and y are two points of PG(2n + 3, g) not collinear
in W(2n + 3,4q), then z* Nyt = T is a (2n + 1)-dimensional subspace of
PG(2n+3,9) and TNW(2n+3,q) = W(2n+1, q). Let us define a point-line
geometry H(O,P) in the following way:

Points:

(1) the point «;

(2) the points different from z but contained in one of the lines < z,p >
where p belongs to O;

(3) the maximal totally isotropic subspaces of W(2n + 3,q) not con-
tained in z' and meeting one of the (n + 1)-dimensional subspaces < z,T, >
(p € O) in a n-dimensional subspace;

(4) the points of PG(2n+3,4q) \ z*.

Lines:

(A) the lines < z,p > where p € O;

(B) the n-dimensional subspaces not incident with z, and contained in
one of the (n + 1)-dimensional subspaces < z,T, > (p € O);

(C) the totally singular lines not contained in z' and meeting z* in a
point belonging to one of the lines < z,p > (p € O).

Incidences:

Points of type (2) and lines of type (C) are never incident. All other
incidences are inherited from PG(2n + 3, q).

In Section 2 we will prove that

Theorem 1.1 If q is odd, H(O, P) is a generalized hexagon with parameters
(¢"9).

In [1] we have proved that if q is a power of an odd prime number
different from 3 and n = 1, then O is a twisted cubic, P is the set of tangents
of O, and W(3, q) is the polar space associated with the symplectic polarity
of PG(3, q) interchanging a point of O with the osculating plane at O in that
point. Moreover, the generalized hexagon H(O, P) is isomorphic to the dual
G,(q)-hexagon. Let us denote by O3 the algebraic variety which represents a
regular spread of PG(5,q) onto the grassmannian of the planes of PG(5, q)
(see [7]). I T, is the tangent space of O; at the point p of O3, then S = {7, :
p € O3} is a partial spread of PG(7,q) (see [8]).
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In Section 4, we will prove the following theorem.

Theorem 1.2 If q is odd, then (J; is a partial ovoid and S is a partial spread
of the polar space W (7, q); also H(Os, S) is isomorphic to the ® D4(q)-hexagon.

Our construction only holds for ¢ odd. For g even, we have found the
same type of difficulties we had in [1].

2. Proof of Theorem 1.1

Let s,¢ > 1 be natural numbers. Let G be a group of order s For any
1=1,2,...,5+4 1, let us fix the subgroups A;(1), A5(1), A3(z), As(%) of G such
st? and |A4(3)] = s?t2. Let us define a point-line geometry H = (P, L,I) as
follows:

243,

P ={T, Ay(?)g, Aa(i)g,9 : g € G2 € {1,2...,5 + 1}},

L ={[z], As(3)g, A1(3)g: g € G,1 € {1,2...,s + 1}}.
where 7 and [7] are symbols and the incidences are TI[1], A4(2)I[i], gl A:(2)g
forallge Gand=1,2,...,s+1, while A;(3)g]A,1(7)h if and only if 7 = 5
and g € A,11(7)k withr = 1,2,3. In [1] we have proved the following theorem

Theorem 2.1 H = (P, L,I) is a generalized hexagon with parameters (s,t)
if and only if, for all distinct %, j, h, m, n in {1,2...,s + 1}, the following
conditions hold:

1) AN A7) =1,

2) As(3) N Ai(j)Ai(R) =1,

3) A (r)NAy(5) =1,

4) A (i)Ax(5) N Au(R) =1,

5) Ay(3) N Ai(5)A1(R)Ai(m) =1,

6) As(i) N Ai(5)A1(3)Ar(R) = As(3),

7) As(2) N A1(5)Ar(h)Ar1(m)As(n) = 1,

8) Ai1(1) N Ai(5)Ar(h)Ar(m) A (k) = 1,

9) A(1)A:1(5) N A(5) A1) = A1(2) U A7),

10) Al(i) n Al(j)Al(h)Al(j)Al(h) =1

In PG(V,F) = PG(2n+ 3, q), we can choose a basis {eg, €y, ..., €2,43} of V in
such a way that the bilinear form
2n+3 2n+3 n+1

( Z Tr€yp, Z yrer) = Z TrYon+3—r — Tont+3-rYr
r=0 =0 r=0

is the alternating bilinear form, which defines the symplectic polarity L asso-
ciated with W(2n + 3, q). For each element v = Y "%1(a,e, + breny14y) of the

r=1
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subspace < e;,ea,...,€2,12 > of V, let M(v,v)(y € F) be the non-singular
linear map of V in itself defined by

n+1
€g > € + Z(arer + bren+l+r) + Y€2n+3,

r=1
e — e+ breapys, r=1,...,n+1,
€ntitr 7 Cptitr — Gr€2pi3, T =1,..,n+1,

€ant3 > €24 3.

In the following, we will denote by M(v,v) also the collineation of the projec-
tive space PG(2n+3, q) defined by the linear map M(v, ). We can prove with
a direct calculation that (wiM(v,v), w2M(v,v)) = (w1, w,) for all vectors w,
and w, of V. This implies that the collineation M(v,~y) stabilizes the polarity
1. Moreover, M(v,~) fixes the point £ = P(esn+3) and all subspaces of z+
incident with . Let us denote by G the group of all collineations M (v, ).

Ify = P(e), then T =zt Nyt = P(< e1,€3,...,€2m42>). H O = {p; =
P(v;):1=1,2,...,q" + 1}, let us define

Ay(3) = {9€G:pg=n},
As(z) {9€G:Tig =T},
Ax(3) {9€ G:<y, T >g=<y,T: >}
A(3) = {g€CG:<y,pi>g=<y,pi >}

for ©+ = 1,2,...,4" + 1. We will denote by %, j,h,m,n five mutually distinct
indexes between 1 and ¢" + 1.

1) A()NA(5) =1.

The point y belongs to pi. If a non identity element g of G belongs to
Ay(i) N As(j), then the point z = yg # y belongs to p; and to < y,p; >.
Hence < y,p; > is contained in p;- and p; € pf NT. As O is a partial ovoid
of W(2n + 1, q), this is impossible.

2) As(2) N Ai(7)A(R) = 1.

We notice that A;(j) = {M(av;,0) : a € F} and A3(z) = {M(w,7) :
P(w) € T,}. If g; = M(av;,0) and gn = M(bvs,0), then gjgn = M(av; +
bun, ab(vj, vs)). If gjgn # 1 belongs to Aj(), then P(av; + bus) is a point of
T:. This implies that < p;, prn > NT; # 0. Therefore < T;, p; > contains three
points of O.

3) Aa(z) N Ax(5) = 1.

If an element g different from 1 belongs to A3(¢) N A2(7), then the point
z = yg belongs to T'N < y, T >. As z # y, the line < y, z > is contained in
TN < y,T; >. Then the point r =< y,z > NT belongs to T; N T;. As P is a
partial spread this is impossible.
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4) Ay(3)As(7) N As(h).

By way of contradiction, let us suppose that a non-identity element g;g;
of Ay(1)As(j) belongs to A;(h). Let r = yg;' and s = yg:. As g; € Ay(3),
the point s belongs to the subspace < Tj,y >. Similarly, r €< Tj,y >.
Therefore the line < r,s > is contained in y* because < T},y > and Tj,y >
are subspaces of y'. As gig; € Ai(h), we have <r,s >=<y,pn > g;'. Then
prg; ! belongs to yt and to < z,p, > because 95 ! fixes all lines of z* incident
with z. This implies pthTl =pnand < 7,8 >=< r,pr, >. The line < 7,8 >
is a totally isotropic line because < y,pn > is totally isotropic and g; is an
automorphism of W(2n + 3, q). Moreover, y ¢< r,s > because 1 does not
belong to A;(h)g;". Hence the plane < y,r,s > is totally isotropic. The line
I =<y,r,s > Nz' is totally isotropic and incident with ps. As < y,r > is a
line of < T,y > and < y,s > is a line of < T}, y >, the line [ is incident with
a point of T; and with a point of T;. As this is impossible because of property
(c), we have the required contradiction.

8) A(2) N Ay(5)A1(R)Ai(m) = 1.

If g; = M(av;,0) € Ai(5), gn = M(bup,0) € Ay(R), gm = M(cvm,0) €
A;(m), then g;gngm = M (av; + bun + cum, ab(vj, vn) + ac(vj, Um) + bc(Vh, vm)).
As Ay(1) = {M(w,0) : P(w) € T;}, the element g;gngm belongs to A,(?) if
and only if w = av; + bu, + cvm and ab(v;, vn) + ac(vs, Vm) + bc(vh, vm) = 0.
This is impossible because of property (d).

6) Ax(3) N A1(7)A1(2)As1(h) = Ai(3).

If g;9i9n = M(av; + bv; + cup, ab(v;, v;) + ab(vj, vn) + be(vi, vn)) belongs
to Ay(z), then P(av; + bv; + cvy) belongs to T;. If P(av; + bu; + cvp) # P(v;),
then the plane P(< vj,v;,vs >) intersects T; in a line. Therefore < T}, p; >
contains three points of . This is impossible because of property (a).

7) Ax(3) 1 A(5)Ax(R)As () ds(m) = 1.

If g; = M(av;,0), gn = M(bvp,0), gm = M(cvm,0) and g, = M(dv,,0),
then g;gngmgn = M(av; + bup + cvm + dvn, ab(v;, v;) + ac(vj, vn) + be(v, va) +
ad(v;,vn) + bd(vh,v,) + €d(Vm, vn)). Therefore, g;9ngmgn # 1 belongs to A;(z)
if and only if p; € Q(pj, Ph)Pm,Pn). This is impossible because of property
(e).

8) Ai(2) N A1(7)A1(h)A1(m)A1(R) = 1.

If g; = M(av;,0), gn = M(bvp,0), gm = M(cvm,0) and gj, = M(dvs, 0),
then g;9n9mg;, = M(av; + bup + cvp + dug, ab(vy, v;) + ac(vy, vi) + be(vi, vn) +
ad(v;,vp)+cd(Vm, v)). If 9;9n9m ) € A1(2) is different from 1, then p; belongs
to the plane < pj;, pn,pm >. Because of property (b), this implies g;gngmg;, =
1.

9) A1(2)A1(5) N A1(5) A1 (7) = As(3) U Ax(7).

If g; = M(av;,0) and M(bv;,0), then g;9; = M(av; + bv;, ab(v;, v;)) and
939 = M(av;+bv;, ab(v;,v;)). As O is a partial ovoid, (vi,v;) = —(vj,v:) # 0.
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Therefore g;g; = g;g; if and only if either g; =1 or g; = 1.

10) A:(3) N A1(5)A1(R)A1(7)Ar(R) = 1.

I M(avj + bup + cvj + dup, (ab — bc + ad — cd)(vj,va)) # 1 belongs to
A(7), then p; = P(av; + bus + cv; + dvs) €< pj,pn >. This implies that
< T, p; > contains three points of O. This is impossible because of property
(a). o

3. Segre varieties and regular spreads

In this section we will recall some of the results contained in [7] ! and [8]. Let
%* be a projective space. A subset ¥ of points of I* is a subgeometry of ©*
if there is a set £ of subsets of ¥ with the following properties:
(1) each element of £ is contained in a line of T*;
(2) (%, L) is a projective space;
(3) if a line I of £* contains two points of £, then IN X € £;
(4) no line of £* belongs to L.
Let ¥ be a subgeometry of £* = PG(n, q") isomorphic to PG(m, q). We will
say that ¥ is a canonical subgeometry of Z* if ¥* =< ¥ > andn=m.In
this case, if © = PG(V, F) and £* = PG(V*,K), a basis of V over F' is also
a basis of V* over K (i.e. V* =K ®V).

Let ¥ be a canonical subgeometry of ©*. For each subspace S of ¥*,
the set SN X is a subspace of . We will say that a subspace S of £* is a
subspace of ¥ whenever S and S N ¥ have the same dimension.

Let K = GF(q®), and let V;, V3, V3 be three vector spaces over K. If V;
(¢=1,2,3) has dimension 2, the vector space W = V; V2 ® V; has dimension
8 over K. Let PG(7,4%) = PG(W, K), and let

52,2,2(‘13) = {P(v: ® v ®v3) € PG(7, q°) v € Vi(i=1,2,3)}.
Thus, S3,5,2(¢%) is a Segre-variety in PG(7, ¢*) of type (2,2,2). Let us define
&1 = {P(Vi ® Kv2 ® Ku3) : v3 € V3,v3 € V3},

S2 = {P(Kv, ® V2 ® Kv3) : v; € Vj,v3 € V3},
S3 = {P(Kv, @ Kva @ V3) 1 vy € V3,v2 € Vo).

The elements of S; (i = 1,2, 3) are lines of PG(7, ¢°) contained in S;22(q?).
Moreover, two lines of S; are disjoint and each point of Sg,z,g(qs) belongs to a
line of S;. If p = P(v; ® va ®v3) is a point of S3,2(¢%), let 7; be the line of S;
incident with p (¢ = 1,2,3). The 3-dimensional subspace T, =< r1,73,73 >
is the tangent space of S»12(g%) at the point p. We can prove by a direct
calculation that T N S222(¢°) =T UrUrs.

1. In [7] there are many misprints due to technical problems at the printers.
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Let * = PG(V*,K) = PG(5,¢%). Let T be a canonical subgeometry
of ©* isomorphic to PG(5,9) = PG(V, F). Then V* = K ® V, and a basis of
V is also a basis of V*. Let us denote by {t,%3,t3,%s,s,26} a fixed basis of
V. Let o be the semilinear regular map of V* in itself, which maps the vector
T8, z:t; to the vector T%_, z¢;. The subgeometry ¥ is the set of the fixed
points of the collineation of £* associated with o, and ¢® = 1. A subspace
S = P(A) of £* is a subspace of ¥ if and only if Ac = A (see [7] Section 3).
Let p = P(v) be a point of £*. We will say that p is an tmaginary point if
the subspace a(p) = P(< v,v0,va? >) has dimension two. It is easy to verify
that a(p) is a subspace of X. If all the points on a line ! are imaginary, we
will say that [ is an tmaginary line.

If o = P(Ly) is an imaginary line of X*, let us define L; = Loo* and
l; = P(L;) for © = 1,2. Let U be the set of all the planes a of X* such that
l;Na = P(v) is a point for all ¢+ € {0,1,2}. As [, is an imaginary line,
a = P(< vg,v,v2 >). By construction, if a = P(A) is a plane of ¢, then
P(Ac) € U. Let us define F = {a € U : a is a subspace of T}. We can prove
that a plane a of U belongs to F if and only if @ = P(< v,vg,v0? >) where
P(v) = lyN o, and that F is a regular spread of T (see [7] (3.11)).

If {e1,e2} is a fixed basis of Lo, let e3 = e,0, es = €30, e5 = €0
and eg = eyo?. Then, {e3, €4} is a basis of L, {es,es} is a basis of Lj, and
{e1,€3,€3,e4,€5,€6} is a basis of V* because the line [, is imaginary. For all

a b

non singular matrices A = d with coefficients in K, we will denote

2

by A the linear map of V* into itself defined by the matrix

a b 00 0 0
cdO0 0 0 0
00a B 0 0
00 @ d 0 0
00 0 0 o B
000 0 ¢ 4

with respect to the basis {e;, e,, €3, €4, €5,e¢}. We will denote by 7,4 the linear
collineation of ©* defined by A. As 747 = 7ap, the set G = {14 : A €
GL(2,¢%)} is a group isomorphic to PGL(2,¢%). Tt is easy to verify that
Ac = gA. This implies that 74 defines a collineation of L. Moreover, Y14 = U
because 74 fixes the lines [; ( = 0,1,2). Consequently G fixes the spread F
and acts 3-transitively on F.

Let U* = A®V* be the third exterior power of V*. Then U* has di-
mension 20. We will call grassmannian of the planes of * = PG(5,¢%) =
PG(V*,K) the set of points G(g®) = {P(vi Ava Av3) : v1,v2,v3 € V*, 0, A
vy Avg # 0} of PG(19,¢%) = PG(U*,K). We can define a Grassmann map

239



LUNARDON : PARTIAL OVOIDS

g between the set of all planes of £* = PG(5,4*) and G(q?) in the following
way. For each plane a = P(< v1,vs,v3 >) of X*, let g(a) = P(vi A vy A va).
The map g is a bijection. If & and § are two planes of £*, let a = g(«) and
b = g(B). Then a N B is a line if and only if the line of PG(19, ¢*) joining a
and b is contained in G(g*). For more details on the grassmannians see [2] or

(3].

If U = A3V, we have U* = K ® U because V* = K ® V . Then,
PG(U,F) = PG(19,q) is a canonical subgeometry of PG(U*, K). Moreover,
G(¢*)N PG(19,q) = G(q) is the grassmannian of the planes of & = PG(5,q)
(see [7] Section 4). Let I be the identity map of U, and s the automorphism
of K defined by z — z9. If & = s® I, then & is a regular semilinear map of U*
in itself, which fixes all the vectors of U. So the subgeometry PG(19, q) is the
set of fixed points of the collineation of PG(19, ¢*) defined by 3. We can prove
that (vi Avz Av3)d = v10 Avao Avao. Therefore, a plane a = P(< v, v2,v3 >)
of £* is a plane of ¥ if and only if (v1 Ava Av3)d = vy Ava Avs (see [7] (4.4)).
By [7] Section 4, g(U) = S;2,2(¢) and there is a 7-dimensional subspace T*
of PG(19, ¢*) such that g(i/) = T* N G(g*). Moreover, T = T* N PG(19, q) is
a canonical subgeometry of T*, and g(F) =T N G(q) = TN g(U) = O3 (see
[7] (4.6)). A regulus R of PG(5,q) is a set of ¢ + 1 mutually disjoint planes
such that, if a line £ meets three planes of R, then £Na is a point for all a in
R.If ¢ > 3 and R is a regulus of F, then there is a 3-dimensional subspace
S of T such that g(R) = SN O; and g(R) is a twisted cubic of S (see [7]
(2.6)). In [8] Teorema 1, we have proved that for each point p of S;22(q?),
the tangent space T, of S.2(¢%) at p is a subspace of T (ie. T, = T, N T
has dimension three), and, if p and r are two points of O3, the subspaces Tj
and T, are disjoint. Notice that S = {T, : p € O;} is a partial spread of
T = PG(7,q).

We put w; = ey AezAes, wy, = e1Aeseg, w3 = e;A\eges, Wy = €1Aeq/\eg,
ws =eyAesNes, we =€y AegAes, Wy = ey AegAes, wg =€y Aeg Aeg. We
will denote by (z,, 2, T3, Z4, s, Ts, T7, Ts) the homogeneous coordinates of a
point of T* with respect to the basis {w), ws, w3, ws, ws, ws, W7, ws}. A point
p of T = PG(7,q) belongs to O3 if and only if either p = P(wl) or there is
an element a € K such that p=(alt9t¢ a9 g1t¢ 4 a9%7 49,07 1) (see [8]).

For each regular linear map A of V* in 1tself let A = A3A and let
7a be the linear collineation of PG(19,¢®) defined by A. As Tup = Ta7s,
theset G = {F4: A c GL(2,q3)} is a group isomorphic to PGL(2,¢%). By
construction, 74 fixes G(¢°). As Ao = oA, it is easy to prove that Az =GA.
Hence 74 fixes PG(19, ¢) and G(q). The collineation 7, fixes g(i) = S2.2,2(¢%),
because 1, fixes Y. Therefore O; is fixed by 74. This implies that each element
of G is a collineation of T and @ acts 3-transitively on O3 (see [7] (4.8)).
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4. Proof of Theorem 1.2

We will denote by L the polarity of T* = PG(7,¢*) = PG(W, K) associated
with the non-singular alternating bilinear form ( , ) of W defined by

8 8
(Z Tiwi, Z YilW;) = Tiys — TaY7 — T3Ye + T4Ys — TsYa + Teya + 7Yz — TeY
i=1

1=1

Lemma 4.1 Let S be a subspace of T*. Then, S* is a subspace of T if and
only if § is a subspace of T'.

Proof. It is easy to verify that (v&,ud) = (v,u)% If p is a point of PG(7,q),
then there is a vector v € W such that p = P(v) and v& = v. If P(u) belongs
to pt = {P(w) : (w,v) = 0}, then (u?,v) = (u?,v3) = (u,v)? = 0. Hence,
P(u?) € pt. We have proved that if p is a point of T, then p' is an hyperplane
of T. |

Remark
By Lemma 4.1, L is also a polarity of T'= PG(7,q).

Lemma 4.2 If a and B are two planes of U, then let P(a) = g(a), P(b)
9(B). The planes a and § are disjoint if and only if (a,b) # 0.

Proof. If a = P(< v;,v3,v3 >) and 8 = P(< uj,u2,uz >) then a =
v; Ava Avs and b = u; A us Auz. The planes a and 8 are disjoint if and only
faArb=uvAvAva Ay Aup Auz 0. fa=35 2w and b= T8, yaws,
then vy Ava Avg Aus Aug Aug = (a,b)e; AegAes Aex AegAes. Hence, a and
B are disjoint if and only if (a,b) # 0. m

Lemma 4.3 For each collineation 74 of G, and for each subspace S of T, we
have (SJ')‘?A = (S:FA)J'

Proof. Let X = ((1) (1)),Ba= (a 0),andCb= <i ?),where

a,b € K and a # 0. For each matrix A = d ,if b # 0, then A =

B,C4X B.Cys where fb =a and fd+ e = c. If b = 0, we can suppose d = 1
and A = B,C.. Then, it is enough to prove that 7x, 7p,, and 7¢, preserve the
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polarity L of T* = PG(7, ¢*) associated with ( , ). We have

000O0O0GO0TO 0?11
0000O0O0T1TO
0000O0T1T00
$_|00001000
0001000GC0]°
00100000
01000000
10000000

Ba = diag(al+q+qz)al+q) a1+q2’a7aq+q2’aq’aq2’ 1)7

1 0 0 0 0 0 0 O

b 1 0 0 0 0 0 O

b 0 1 0 0 0 0 0

G — e B 1 0 0 0 0

b 0 0 0 1 0 0 O

pite 0 0 ¥ 1 0 O

p+ta 0 b 0 ¥ 0 1 0

pitatd® plta pl+d® p patd® g i

With a direct calculation, we can prove that (vX,uX) = (v,u), (vCs,uCs) =
(v,u) and (vB,,uB,) = a'*9*¥ (v, u). This completes the proof. ]

Remark

When g is even, O3 is a very particular ovoid of Q*(7,q), which is called
desarguesian in [5], and the spread S is the spread of Q*(7, ¢) constructed by
W.M. Kantor in [5] Section 8 (see [8] Teorema 4).

Lemma 4.4 Ifqisodd, then let W(7, q) be the symplectic polar space arising
from the polarity L of T = PG(7,q). Then,

(a) H = {74 : A€ GL(2,¢%),det A = 1} = GN PSp(8, q) is 2-transitive
on O, and on S.

(b) 05 is a partial ovoid of W (7, q).

(c) S is a partial spread of W(7,q).

Proof. As H = {14 : A € GL(2,¢%),det A = 1} ~ PSL(2,¢3) is 2-
transitive on the regular spread F of PG(5,q), property (a) follows from
Lemma 4.3. By Lemma 4.2, O3 is a partial ovoid of W(7,q). If p = P(un),
then Ty = P(< w;,w;, w3, ws >) is a maximal totally isotropic subspace of
the polarity L of T* = PG(7, ¢*). Because of Lemma 4.1, T, = T;NT is a max-

imal totally isotropic subspace of W(7,q). As H is a subgroup of PSp(8,q),
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which acts 2-transitively on S, all elements of S are maximal totally isotropic
subspaces of W (7, q). Therefore, S is a partial spread of W (7, q). O

Remark

By Lemma 4.3, the group G is contained in the stabilizer of the polarity L
in PGL(8,q).

Lemma 4.5 Let q > 3 be odd. Let py, p;, p3 be three points of 05 and let
Tp; be the tangent space of O3 at p;.

1) There is a unique 3-dimensional subspace S of T', which intersects
O3 in a twisted cubic and is incident with p,, p, and p3. If ¢ # 3", then S
in non singular with respect to the polarity L. If p is a point of the twisted
cubic SN O3, then T, N S is the tangent line of SN O; at p.

2) If a 3-dimensional subspace U # S of T contains p,, p, and p3, then
U is incident with at least four points of Os.

3) < Tpy,p2 > NO3 = {p1, P2}

4) A line of W(7,q) joining a point of T, to a point of Ty, cannot be
incident with p;. :

5) Let ps be a point of O3 different from py, ps, ps. f ps € S, then
Tp,N < p2,p3,ps >= 0. If p € Tp,N < P2, p3,Ps >, then p does not belong to
C(p2,Pp3,Ps)-

6) If ps is a point different from pi,p;,p3,ps and p1 €< p,p3,ps,P5 >,
then p, does not belong to Q(p2,P3,ps,Ps).

Proof. As aregulus is represented by a twisted cubic, no four points of O3
are coplanar. Suppose that a three dimensional subspace S of T' contains five
points pi1, P2, P3, Ps, Ps of Os. Let oy = g7 (p;) for i = 1,2,3,4,5 and let R
be the regulus of PG(5,q) containing the planes o, o, and a3. By Lemma
(2.1) of [7], each transversal line of R is incident with a4 and as. As the o
(1 = 1,2,3,4,5) are elements of a regular spread, oy and as belong to R.
Then SN O3 = g(R). As @ stabilizes | and G acts 3-transitively on O3, we
can suppose that the points p; = P(w;), p, = P(ws) and p3 = P(TP, w;).
Therefore SN O3 = g(R) where R is the regulus of PG(5,q) containing the
planes P(< e, e3,e5 >), P(< ez,e4,6 >), P(< €1 + €3,63 + €es,€5 + €5 >).
As the plane P(< —e; + e;,—€3 + €4,—65 + €5 >) belongs to R, the point
P(—w, + w2 + w3 — wy + ws — we — wy + ws) of O3 is incident with S.
Hence S has equations z; = 23 = z5 and 4 = 2 = z7. Thus, SN O3 =
{(#3, t%u, t2u, tu? t?u, tu?, tu? ,u?) : t,u € F}, the line Tp, N S is the tangent
line of SNO; at py, and Tp, NS = {(«,F,5,0,6,0,0,0) : o, B € F}. The group
Gs = {ra: A € GL(2,q)} is the stabilizer of the regulus R in the group G and
acts 3-transitively on R. If Gs = {r € G: 5" = §} = {#4: A € GL(2,9)},
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then és 1s 3-transitive on S N O;. Therefore, T, N O; is the tangent line of

5N O3 at p for each point p of S N Q3. The subspace S* has equations (in
T*)

) =25 =0,
{ T)—T3— T3+ Ty —Ts5+Te+T7—x =0,
i+ zotz3teat s+ e+ 7+ 23 =0.
When ¢ # 3", we can prove with a direct calculation that § and S' are
disjoint.

As T,, = {(a,47,8,0,5,0,0,0) : a € F,b € K}, it is an easy calcula-
tion to prove that < T, ,p; > NOs = {p1,p2}.

Let ! be a line intersecting Tp, (¢ = 1,2) and let z; = T, N I. Then
2, = (a,b7,59,0,5,0,0,0) and z; = (0,0,0,c,0,c?,c?, B). If the point p3 =
(1,1,1,1,1,1,1,1) belongs to the line I, we can suppose that z; and z, are re-
spectively the points (1,1,1,0,1,0,0,0) and (0,0,0,1,0,1,1,1). As (z,,2,) =
~2 # 0, the line ! does not belong to W (7, q).

Let py = (a't9t? g1t9, g1+e" g a9+% a9 a7 ,1). A point of the plane
< Pa2,p3,Ps > belongs to Tp, if and only if a € F. This is equivalent to
saying that p, belongs to S. Let ps = (a® a? 4% a,a%a,q,1) and let ps =
(b, 6%,6%,b,b%,b,b,1) with a, b, 1, 0 mutually distinct elements of F. We have
(p2,p3) = _17 (P27P4) = _a37 (P37P4) = (1 - a)3; (p27p5) = _b37 (p37p5) =
(1 —b)?, (ps,ps) = (a — b)%. Let p; = P(v;) for: =1,2,3,4,.

We have C(p2, p3, ps) = {P(avs+Bva+vs) : —af—aay+(1—a)?By =
0}. Then p = T,,N < p2,p3,Ps >= P(avs + Puvs + yva), where B+ ay = 0
and a + 8+ v = 0. Notice that v # 0. As —~af — aday + (1 — a)’By =
2a%y%(a — 1) # 0, p does not belong to C(p2, pa, ps)-

By definition, Q(p2, pa, 4, ps) is the set of all points P{av,; + v+ yvs+
6vs) such that —af—aay+(1—a)?By—b2aé+(1—5)*B6+(a—b)>y§ = 0. As
p1 = P(avy + Bvs +yvs+ 6vs), where o = (a—1)(b—1)(a—b), B = ab(b—a),
v =—b(b—1)and § = a(a—1), p) does not belong to Q(pz, ps, ps, ps) because
—af—alay+ (1 —a)’By—bab + (1 —b)*B8+ (a — b)*v6 = —2a?b(a—1)(b—
1)(a —b)* # 0. o

Remark

By lemma 4, we have just proved that the properties (a), (b), (c), (d), (e)
are verified when ¢ is odd and ¢ > 3.

Lemma 4.6 H(O;,S) is isomorphic to the 3D4(q)-hexagon.

Proof. Using Tits’ description of Moufang polygons given in [10], W.M.
Kantor has given the following construction of the *Dy(gq)-hexagon ([6]). Let
Q =FxKxFxK xF.If weput (a,b,v,d,¢)- (¢, ¥,7,d,¢) = (a+,b+
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V, v+ + e —tr(b'd),d + d',e + €'), then Q@ = Q(-) is a group of order ¢°
whose centre Z = {(0,0,7,0,0) : v € F} has order q. Moreover, @/Z is a
vector space over F. Let K = K U {o0}. Define

A4(°°) = {(07b7'77d75):b7d€K;'775€F}7

A3(°°) = {(070777d75):d€K;'775€F}7
Ay(0) = {(0,0,0,d,¢):d € K;e€ F},
Ay(o0) = {(0,0,0,0,¢): €€ F}.

and, for all t € K, let?

As(t) = {(a,b,7,4d, atitete _ tr(bt‘”"’2 —dt)): e,y € F;b,dc K},
As(t) {(a, b,7, —at?*® + b398 4 517, —2at 99 4 tr(Bt2t))
a,v € F;be K},
Ay(t) = {(a,b,—a® T _ p(ptFE — abtItT), — ot 4 pUT 4 b4,
—2at' 9+ 4 (1)) a € F;b € K},
A(t) = {(a,at, -t IHE oIt op1tetd) . g € FY.

Let us define a point-line geometry H = (P, L, I) as in Section 2. Then H is
isomorphic to the 3Dy(g) hexagon (see [10] and [6]).

Let W = Fwo ® W & Fwg be a vector space of dimension 10 over
F =GF(q) EW* = K®W, then W* = Kwy, ® W* ® Kwg. Thus, wo,
wy, Wz, W3, Ws, Ws, We, W7, Ws, W form a basis of W*, and PG(W,F) =
PG(9,q) is a canonical subgeometry of PG(W*,K) = PG(9,¢%). We will
denote by (o, z1, Z2, T3, 24, 5, Te, T7, Ls, g ) the homogeneous coordinates of
the point P(¥7_, zsw;). The semilinear map p of W* into itself, described
by Y0, ziwi — zdwo + 2wy + zdw, + zlws + ziwy + ziws + zIwe + Tlwy +
zaws + wiwg, defines a collineation of PG(9, ¢*), which fixes all the points of
PG(9,q). Notice that p induces & on the subspace T = P(W) of PG(9,q).

Let v = 3% o z;w; and u = Y9, y;w;. Let us denote by x the alternat-
ing bilinear form of W* defined by v X u = Zoyg + Z1¥s — T2Y7 — T3Ys + Tays —
Tsys + Teys + T7y2 — Ty — Toyo. Notice that x induces on W* the bilinear
form (, ) defined in Section 3. As vp X up = (v x u)?, the polarity of PG(9, ¢*)
associated with x is also a polarity of PG(9, q), which induces on T = P(W)
the polarity L associated with the bilinear form ( , ) defined in Section 3.
For this reason, we will denote by L also the polarity of PG(9, q) associated
with x. Let W(9,g) be the polar space arising from L. If ¢ = P(wg) and
y = P(wo), then z- Nyt =T and T N W(9,q) = W(7,q) is the polar space

2. There are some misprints in the definition of the automorphism t¢ given in [6] p.
100. The right expression is tg : (a,d,7,d,€) — (a,b+ ot,c ~ altitete _ tr(b”’:t) -
tr(abttte), d 4+ ottt 4 bete 4 5019, e+ atlHte 4 gr(bteHE)  tr(dt)).
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arising from the symplectic polarity of T associated with the bilinear form

(,)

If P(w;) = peo, then Ty, = {P(ow; + b wy + bwy + bws):a € Fyb €
K} Ifv, = al*t9te oy 4 a1, + @11 Wy + awy + a7 ws + awe + a¥ wr + we
with a € K, then T = P(< v,,v;,v2,v3 >) where

1 = e Ala%estes) A (aqz es + es) = aq"'q’wl + a%w,; + aq2w3 + wy,
(aer +ex) AesA (a"ze5 + €)= a7 w, + awy + a¥ws + we,

(aer +e2) A(a%es + eg) Aes = a'tw, + aws + alws + wy.

(/]

V3

Therefore T, = { P(av, + bv, + b, + b¥v3) : a € F,be K}.

For all a,v,e € F and b,d € K, let M(a,b,d,¢,7) = M(aw, + b w, +
bws + dws + bws + dwe + dT wy + €ws, ) be the linear map of W* defined
in Section 2. We can prove with a direct calculation that

vM(a,b,d, e,v) x uM(e,b,d,€,7) = v X u,

M(a7 b, d, 67'7)P = pM(ar b,d, e, '7)'

This implies that the collineation M(e, b, d, €,v) fixes PG(9, q) and stabilizes
the polarity L. Then M(e,b,d,¢,v) is a collineation of PG(9, q), which fixes
the point z and all subspaces of z* incident with z. If § = {M(e,b,d,e,7):
a,v,€ € F,b,d € K}, then @ is a group of order ¢° transitive on the points
of W(9,4) \ «*. For each point p, (t € K), we put

Ayt) = {heQ:ph=p},

As(t) = {he@:T,h=T,},

Aty = {heQ:<y,Tp,,>h=<y,T, >},
A@R) = {heQ:<y,p>h=<y,p >}

With a direct calculation, we can prove that

Ayo0) = {M(a,b,d,0,7):a,v€ F;bde K},
Ajz(o0) {M(e,b,0,0,7): a,7y € F;b€ K},
Ay(o0) = {M(a,b,0,0,0):a € F;be K},

I

Ay(0) = {M(a,0,0,0,0): a € F},
Aq0) = {M(0,b,d,e,7):¢,v€ F;b,dc K},
A3(0) = {M(0,0,d,e,7):¢,v€ F;de K},
A (0) = {M(0,0,d,¢,0):v¢c F;d€ K},
A(0) = {M(0,0,0,¢,0):¢c F}.
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Moreover, for t € K \ {0} we have

Aft) = {M(at™ e —tr(bt?t — dt),d, b,a,7) : o,y € F;b,d € K},

As(t) = {M(=2at™7 4 tr(bt9H), T 4 14T 4 019 b0, 7) :
a,v € F;be K},

Ay(t) = {M(=2at*+HT 4 tr(bH), —at?t 4 947 4 1919, 5,0, 0) :
a€ F;be K},

At) = {M(at't9*? ot ot 0,0):a € F}.
The map of @ into @ defined by
g =(a,bv,d,€) — g = M(e,d, b, a, -2y + ea — tr(bd))

is an automorphism of Q into Q. We can prove directly that A,(t) = {g €
Q:§€ Ai(t)}, forall t € K and 5 =1,2,3,4. As the map 8§ : H — H(03,S)
defined by '

: Iz,
[t] < z,p: >,
Aq(t)g — P,
As(t)g - T4,
As(t)g »< Tp,,y > §,
Ai(t)g —»<pe,y >3,
P g yg,

D D D D D D D

is an isomorphism, H(O;,S) is isomorphic to the 3D,(q)-hexagon. O

5. Subhexagons

Let S be a 3-dimensional subspace of T' such that SN O; is a twisted cubic.
If p. is a point of O3, then Ty, N S is a line if and only if p, € 5. Let
U=<z8y>= PG(5,q). Let us define a point-line geometry H(S) in the
following way. A point z of H(O;,S) of type (1) or (2) or (4) is a point of
H(S) if and only if z is a point of U. A point X of H(O3,S) of type (3) is a
point of H(S) if and only if U N X is a plane. A line ! of H(O3,S) of type
either (a) or (c) is a line of H(S) if and only [ is contained in U. A line X of
H(O;3,S) of type (b) is a line of H(S) if and only if X NU is a line. Therefore,
H(S) can be regarded as a substructure of H(O3,S). In particular, each chain
in H(S) defines a chain of H(O3,S) of the same length.

Theorem 5.1 H(S) is a generalized hexagon isomorphic to the dual G,(q)-
hexagon.
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Proof. H(S) contains exactly (1+¢)(1+ g+ ¢*) points and (1+4¢)(1+q+¢?)
lines. By construction, there are no circuits of length less than 12. Moreover,
if p and r are two distinct points of O3 N S, then {z,< z,p >,p,T, N §,<
T, NS,y ><py >y,<yr><T,NSy>TNSr<rz>z}tisa
circuit of length 12 of H(S). By [9] p. 5, H(S) is a generalized hexagon with
parameters (g, q). In [4] W.M. Kantor has proved that there is a canonical
way to construct the dual G,(g)-hexagon starting from a twisted cubic (see
(4] Remark 2). Thus, H(S) is isomorphic to the dual G;(q)-hexagon. O

By Theorem 5.1, we can extend the construction of the dual G(q)-
hexagon given in [1] to the case ¢ = 3".
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A census of known flag-transitive
extended grids

T. Meixner A. Pasini

Abstract
We list all examples of flag-transitive (possibly repeated) extensions
of grids that we presently know. Many of the families we will describe
have never appeared before in the literature; we also give new construc-
tions for some non-new examples. Some characterization theorems will
be proved in a forthcoming paper [13], carrying on the classification
work of [8], [11], [12], [16].

1. Introduction

1.1. Notation

The symbol ¢*.C;(s, 1) will always denote the following diagram of rank n4 2,
withn > 1:

-
~

7]

—_

n nodes

equivalently:

S 1

where s, 1 are orders and s < co. We also write ¢.Cs(s, 1) instead of ¢'.C,(s, 1)
when n = 1. We write ¢*.C; or c.C; instead of ¢™.Cy(s,1) or ¢.Ca(s, 1) re-
spectively, when the order s is clear from the context or when we are not
interested in it.

Residually connected geometries belonging to the diagram ¢*.Cy(s, 1)
will be called n-times extended grid of order s. A 1-time extended grid of
order s will be called an extended grid of order s, for short.

We use the nonnegative integers 0, 1,..., n, n + 1 to denote types, as
follows:
[+
S —————O—— oo ° Py o
0 1 n—2 n-1 n n+1
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The elements of type 0 will be called points, those of type n + 1 blocks
and those of type 1 line or edges or 1-faces. More generally, the elements of
type : = 1,2, ...,n will be called i-faces (also faces, for short).

We are interested in flag-transitive geometries. Assuming I' flag-transitive,
we denote by I'x (k =0,1,...,n — 1) the isomorphism type of the residues of
T of type {k+ 1,k +2,...,n+ 1}; in particular I'; is the isomorphism type of
residues of points. We say that I is a (k + 1)-times extension of I'x; trivially,
Ty is an (n — 1 — k)-times extended grid, when k < n — 1.

1.2. Geometric properties

Let T be an n-times extended grid of order s. It follows from [15] (Proposition
2) that the Intersection Property holds in I if and only if distinct faces are
incident with distinct sets of points. If this is the case, then distinct blocks
are also incident with distinct sets of points, whence the blocks can be viewed
as sets of points (of size s+ 1+4n) and the i-faces are the (i + 1)-subsets of the
blocks (2 = 1,2, ...,n); furthermore, the incidence relation can be interpreted
as (symmetrized) inclusion. Therefore, if the Intersection Property holds in T,
the geometry I' is uniquely determined by its rank and its point-block system.

At the opposite side we may place the class of flat geometries. We say
that I is flat if every point of I is incident with all blocks of I'. It is an easy
exercise to prove that, if n > 2 and all ¢.C, residues of T' are flat, then I is
flat and all i-faces of I are incident with all blocks, for every:=1,2,...,n—1
(however, we will prove in a subsequent paper [13] that no flag-transitive
example of this kind exist).

The point-graph G(T') of ' is defined as follows: the vertices of G(I') are
the points of T'; two points of I' are adjacent in G(I') precisely when they are
incident with a common block of T'.

Trivially, the blocks of I' form (s + 1 + n)-cliques in G(T'). If the Inter-
section Property holds in I' and the blocks of T’ are precisely the maximal
cliques of G(T'), then we say that T' is determined by its point-graph G(T')
(when n = 1, this corresponds to the triangular extensions of [6]).

We also define a block-graph G*(T'), taking the blocks as vertices and
stating that two blocks are adjacent in this graph when they are incident
with a common n-face. We say that the set of blocks of I splits when G*(T') is
bipartite. It follows from [17] that the set of blocks of I' splits if I' is 2-simply
connected.

We say that I' admits unfolding if T' can be obtained as shadow geometry
(see [19]) from a geometry belonging to the following diagram of rank n + 2
(shadows are taken with respect to the initial node of this diagram, circled in
the picture):
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c_°*s
@___._ ..... _.—.—<
[+
S

Trivially, I' admits unfolding if and only if the set of blocks of I' splits
and, for every point or face z and every n-face y, the elements z and y are
incident iff the two blocks incident with y are also incident with z.

We will mention which of the above properties hold in the examples we
will consider, but we will not prove them in every case, leaving that job for
the reader. A number of different parameters can be chosen to extimate the
size of I'; we will use the diameter of the point-graph G(T') to this purpose;
we will denote it by 8.

1.3. Covers and quotients

In some cases we will only describe the 2-simply connected representatives
of the family of examples we consider. We will not list all possible quotients
of those 2-simply connected geometries (in some cases, we are unable to do
that). We will only mention some quotients that either have been described
in a different way in the literature or look particularly interesting for some
respect.

In other cases, we know that the examples we describe are not 2-simply
connected, but we do not know their universal 2-covers. In those cases, we
give the information we have on proper 2-covers.

When the Intersection Property holds in I', the points, the lines and
the 3-subsets of the blocks of I' (namely the 2-faces, when n > 2) form a
2-dimensional simplicial complex. We call it the shadow complex of I and we
denote it by K(T'). It follows from [18] that the n + 1-homotopy group of I'
and the homotopy group of X(T') are isomorphic. Therefore, if the Intersection
Property holds in ', we can safely substitute (') for I' when we want to
check if T' is n + 1-simply connected.

1.4. Notation for groups

Given a flag-transitive subgroup G < Aut(I'), we denote by B the Borel
subgroup of G, namely the stabilizer in G of a chamber of I'. The stabilizer
in G of an element of type i = 0,1,...,n + 1 is denoted by G;. The symbol
K; denotes the elementwise stabilizer of the residue I'y, of an element = of
type 1 and G; = G;/ K; is the action of G; on T'.. The subgroup K; is called
the kernel of G;; we will often write kernels in square brackets; for instance,
writing Gny1 = [Sk] X S we mean that Gpy1 = Knyq X Gnyy with Knyy = Sk
and Gp41 = Sm.
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We will never describe all subgroups G; (i = 0,1,...,n + 1). We often
only give some information on Gy (stabilizer of a point) or on G+ (stabilizer
of a block), or on G,;1 only, leaving the rest for the reader.

Furthermore, in many cases the examples we describe admit more than
one flag-transitive automorphism groups. We will not list all of them in every
case. We often only describe the full automorphism group Aut(T') or a (often
unique) minimal flag-transitive automorphism group, leaving the rest for the
reader.

We use the notation of [7] when dealing with finite groups. We also
use the symbol | to denote wreath products. Furthermore, given a Coxeter
group W, by W+ we mean the subgroup of W consisting of all elements of
even length of W. In particular, (Si X Sk)* is the subgroup of the (reducible)
Coxeter group W = S x Sk, consisting of all pairs of permutations (f, g)
with f € S, g € Sk and where f, g are either both even or both odd.

2. The examples
2.1. The Coxeter family Cox(n,s)

The examples we are going to describe in this subsection may be considered
as the ‘standard’ ones.
Let D, , be the following Coxeter diagram of rank n+2s (n > 1, s > 1):

s nodes
'd ™
O ——@— +ovon PO NUU—
@@ crees —
-~
O ——@— 0o PO NUU—
n — 1 nodes N ,
s nodes

In particular, we have D,y = Dyya if n > 2, Dy, = Ageq1, D2a = Es,
D3,2 = Es and D2,3 = E7.

Let C be the Coxeter complex belonging to D, ,. Truncating the last
s—1 nodes in each of the two right horns of the diagram, we obtain a geometry,
call it tr(C), belonging to the following diagram of rank n + 2:

c _*s
— & ..... —o—o—<
c s

(of course, tr(C) = C when s = 1, namely no truncation is done in this case).
Let T be the shadow geometry of tr(C), with respect to the initial node of
the diagram (circled in the next picture):
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Then T is an n-times extended grid of order s. We denote I' by the
symbol Cox(n, s).

Geometric properties. The geometry Cox(n, s) satisfies the Intersec-
tion Property and it is determined by its point-graph. The diameter § of the
point-graph is infinite when either » > 2 and s > 2 or s > 2 and n > 2.
When n =1, we have § = s + 1. When s = 1, then § = 2. When n = s = 2,
then § = 3.

Trivially, I'o = Cox(n—1,s) if n > 2, where Ty is the isomorphism type
of the residues of points of I' = Cox(n, s).

2-simple connectedness. It follows from [14] (Theorem 1) that tr(C)
is 2-simply connected. By [17] and since tr(C) is the unfolding of Cox(n, s), the
universal 2-cover of Cox(n,s) admits unfolding and its unfolding is a 2-cover
of tr(C). Therefore, Cox(n, s) is 2-simply connected, since tr(C) is 2-simply
connected.

Studying all possible quotients of Cox(n,s) seems to be hopeless, in
general (this would be the same as studying all possible quotients of the
Coxeter complex C). However, something can be said in some special cases,
as we will see later.

Flag-transitive automorphism groups. We have Aut(Cox(n, s)) =
W, : 2, where W, , denotes the Coxeter group of type D, , and the factor 2
on top is contributed by a diagram automorphism of W,, ,. The Borel subgroup
of G = W,, : 2 has the following structure: B = S, x S,. The group G, acts
faithfully on I’y (notation as in subsections 1.1 and 1.4) and it is isomorphic
to Wao1,:21fn > 2. When n =1, then Go = S,4112.

We have Gni1 = [Ss] X Snts+1 (notation as in subection 1.4).

When s > 2, then W}, : 2 also acts flag-transitively on Cox(n, s)
(notation as in subsection 1.4); in fact, Wf, : 2 is the minimal flag-transitive
automorphism group of Cox(n, s). If we now assume G = W, : 2 instead of
G = W,, : 2, then we obtain a description similar to the above for Go, but
substituting W,f'_l,, 12 for Wy_1,, : 2 when n > 2 (we have Go = A, 12
when n = 1). The Borel subgroup B now has the following structure: B =
(S x S)*.

We now have Gnyy = [A4,] : Snyetr1 = (Ss X Sntatr)T-

Special cases. Cox(1, s) is the so-called Johnson geometry [6]. In par-
ticular, Cox(1,2) is the affine polar space [6] obtained deleting a secant hy-
perplane from QF(2).

We have W, , = S3,42 X 2 and Cox(1, s) admits just one flag-transitive

253



MEIXNER AND PASINI: A CENSUS OF EXTENDED GRIDS

proper quotient, obtained factorizing over the direct factor 2 of the splitting
Sys+2 X 2 (that factor is contributed by a suitable involutory diagram auto-
morphism of the Coxeter complex C of type As,41). We denote this quotient
by the symbol Cox(1,s)/2 (it is called the ’halved Johnson geometry’ in [6]).
Trivially, the alternating group As,,. and the symmetric group Sa,. are the
two flag-transitive automorphism groups of Cox(1,s)/2.

Cox(n,1) is the Coxeter complex of type C, ;2 (trivially, we have W : 2
= (2! : S,42) X 2 is its unique flag-transitive automorphism group). It
admits just one flag-transitive proper quotient, obtained factorizing over the
center Z, of the Coxeter group 2**! : S, .5 x 2. This quotient is flat.

Remark

A 2-times extended grid of order 3, call it T, is mentioned in [2] (example
(30’)) admitting the symplectic group Sg(2) as flag-transitive automorphism
group. The Borel subgroup and the stabilizers of elements of T' are just the
same as in Cox(2, 3). Since Sg(2) is simple, I' does not admit unfolding, hence
it is not 2-simply connected. It will turn out from a theorem of [13] that T' is
in fact a quotient of Cox(2, 3).

2.2. The permutation family Sym(n + 3)

Let G* be the square-grid graph naturally defined on the (n + 3)? pairs (3, 5)
(3,7 =1,2,...,n+3;n > 1; two pairs (4, ) and (A, k) are adjacent in G+ when
either ¢ = h or j = k). Let G~ be the complement of G+.

An n-times extended grid I of order 2 can be defined taking the vertices
as points, the maximal cliques of G~ as blocks, the 7 + 1-cliques of G~ as ¢-
faces (¢ = 1,2,...,n) and defining the incidence relation in the natural way,
as (symmetrized) containment. Trivially, G~ is the point-graph of T'; the set
of blocks of T' can also be viewed as the group of permutational matrices of
rank n + 3. Because of this, we denote I" by the symbol Sym(n + 3).

Geometric properties. The Intersection Property holds in Sym(n+3)
and it is quite evident that Sym(n + 3) is determined by its point-graph. The
diameter of the point graph 1s 2.

The residues of Sym(n+3) of type {k+1,k+2,...,n+1} (£ =0,1,...,n—
2) are isomorphic with Sym(n + 2 — k).

Furthermore, the set of blocks of Sym(n + 3) splits; this follows from
the 2-simple connectedness of Sym(n + 3) (see below), using [17]. However,
that splitting can also be recognized directly: we have remarked above that
the blocks of Sym(n + 3) can be viewed as permutational matrices of rank
n + 3, whence as permutations of degree n + 3; the set of even permutations
and the set of odd permutations give us that splitting of the set of blocks.
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The geometry Sym(n + 3) admits unfolding, since its set of blocks splits
and the Intersection Property holds in it.

2-simple connectedness. The Intersection Property holds in the ge-
ometry Sym(n + 3). Hence the n 4+ 1-homotopy group of Sym(n + 3) is the
homotopy group of the shadow complex of Sym(n + 3), which is easily seen
to be trivial. Therefore Sym(n + 3) is n 4+ 1-simply connected; in particular,
Sym(4) is 2-simply connected. By an easy inductive argument, we obtain that
Sym(n + 3) 1s 2-simply connected for every n > 1.

Flag-transitive automorphism groups. Let S be the set of blocks
of Sym(n + 3). As we have remarked before, S can naturally be identified
with the symmetric group Spy3, in its natural action on the set of symbols
X ={1,2,...,n+3}. Let Si, and Sg be the two actions of the symmetric group
S on itself, by left and right multiplication respectively. An action of St x Sg
on the set of blocks of Sym(n+ 3) is defined in this way. The action of Sz, x Sg
on points and faces of Symm(n + 3) is uniquely determined by the action of
S x Sg on the set of blocks, since points and faces are uniquely determined
by the sets of blocks which they belong to. In particular, the set of points of
Sym(n + 3) can be identified with X x X, X = {1,2,...,n+ 3}; given f € §,
let fr and fr be the elements of Sy and Sg, respectively, corresponding to
f. Then, given f,g € S and 4,j € X, the element (fz,gr) € St X Sr acts on
the point (3,7) € X x X as follows: (fL,9r)(3,7) = (¢7'(3), f(3))

The full automorphism group G = Aut(Sym(n + 3)) of Sym(n + 3)
has the following structure: G = (SL x Sr) : (¢), where ¢ acts as follows on
St x Sr: ¢(fr,9r) = (91, fr) for f,g € S, the symbols fi, fr, gz, gr having
the meaning stated above.

Stabilizers of blocks have the following isomorphism type:

Gni1 = [Z3] X Snta. The stabilizer Gy of a point acts faithfully on the
residue I’y of the point (we have Go = Aut(Sym(n+2))ifn > 2 and Go = 5312
if n = 1). As for the Borel subgroup, we have B = 22.

Smaller flag-transitive automorphism groups also exist: for instance,
there are two minimal flag-transitive automorphism groups, each of them
isomorphic to Apy3 X Sp43 and obtained as G = Ay x Sg or G = S;, x Apg,
where Aj, (respectively, Ag) is the alternating subgroup of the symmetric
group Sy, (of Sg, respectively).

In these minimal automorphism groups we have Go = Ani2 X Spt2
(= Z312whenn=1), Gpy1 = Apy3 and B = 1.

A special case. Sym(4) (n = 1) is the affine polar space [6] obtained
deleting a tangent hyperplane of Q}(2). Furthermore, Sym(4) can also be
viewed as a Minkowski plane (of order 3, that is with 4 points on each cir-
cle). Indeed the set of blocks of Sym(4) is a sharply 3-transitive group of
permutations (of degree 4).
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Sym(4) also admits a proper flag-transitive quotient, which we denote
by Sym(4)/2? and is obtained factorizing over the Sylow 2-subgroup 2% of Ay,
viewed as a subgroup of Sy, or of Sg.

The geometry Sym(4)/2? is flat and its full automorphism group is
S54% 53 (S4x Z3 and A4 x S3 are the two minimal flag-transitive automorphism
groups of Sym(4)/2%).

Other proper quotients of Sym(n +3) can be constructed (in particular,
flat quotients), for every n > 1. For instance, if X = {1,2,...,n + 3}, we can
take a non-trivial subgroup E of S acting fixed-point-freely on X, realizing F
as a subgroup of Sy, or of Sg. The full automorphism group of Sym(n+ 3)/E
will be S,;3x N(E)/E, where N(E) is the normalizer of E in S (we obtain flat
quotients when E acts regularly on X). However, Sym(4)/2? is the only flag-
transitive quotient that we can obtain in this way. In fact, it is the only flag-
transitive proper quotient that we know for a geometry of type Sym(n + 3).

Links with other topics. The construction of Sym(n + 3) can be
generalized for any sharply k-transitive finite permutation group G, with k >
2 (see [4]). When k = 2 we obtain flag-transitive nets. When k > 3, we obtain
flag-transitive geometries belonging to the following diagram of rank k:

where IV denotes the class of nets and s—1+k is the degree of the permutation
group G. When k = 3, the geometries defined above are Minkowski planes
(enriched with the pairs of distinct points contained in a common circle) and
it is well known that the possibilities for G are the following ones: S4, As
(= La(4) = Ly(5)), PGLy(q) and Ly(g?).2 (q odd).

When G = Sy (k > 3), then we obtain Sym(n +3) (k = n+2). When
G = Az 4k (k > 4), then we obtain a k — 3-times extension of the Minkowski
plane associated to As = Ly(4). It follows from the well known classification
of sharply k-transitive finite permutation groups with k > 2 that, apart from
n-times extended grids Sym(n + 3) and the above examples from alternating
groups, only two more examples exist for k > 4, related to the Minkowski
plane obtained from L;(9).2 = Mo. Indeed that Minkowski plane can be
extended twice, extending Mo to the Mathieu group My, first (k = 4), next
extending My, to My, (k =5).

2.3. A tower for Aut(M,,)

A 3-times extended grid T of order 3 is constructed in [6] (example 9.12(i)),
starting from two points a, b of the 5-(24, 8, 1) design S for the Mathieu group
M,4. The points of T are the 22 points of S other than a or b and the blocks
of T' are the blocks of S containing exactly one of a or b. The i-faces (i = 1,2)
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are the 1+ 1-subsets of the set of points of I'. The 3-faces of I are the 4-subsets
of the blocks of T' (viewed as sets of points of T'). The incidence relation is
the natural one, defined by (symmetrized) containment.

Geometric properties. It is clear from the above that the Intersection
Property holds in I' and that the set of blocks of T splits (in fact, the blocks
are partitioned in two class according to which of the points a or b they
contained in §). Therefore I' admits unfolding.

The point-graph G(T') is trivial (diameter § = 1), whence I is not
determined by its point-graph. In fact, there are 4-cliques of the point graph
that do not belong to any block of I': these are the 4-cliques contained in
blocks of S containing both a and b.

The residue I'g of a point of " can be obtained mimicking the above con-
struction in the 4-(23,7,1) design for M,3 and it has properties quite similar
to those of I. In particular, the point-graph of I'y is trivial. The residue I'; of a
point-line flag can also be obtained as above, now starting from the 3-(22,6,1)
design for Mj;. Needless to say that I'; satisfies the Intersection Property and
admits unfolding (indeed these properties are inherited by residues) but the
point-graph of ['; is not trivial: it has diameter § = 2.

Notation. The geometry I'; (see above) is a Cameron-Fisher extension
of odd type (see [6]); we will examine that family of extended grids in subsec-
tion 2.5. According with the notation we will state there for that family, we
denote I'; by the symbol CF~(4). Consistently with this, we denote Iy and
T by c.CF~(4) and ¢?.CF~(4), respectively.

Covers. Since the point-graph of c2.CF~(4) is trivial and every 3-
clique of that graph is a 2-face, the shadow complex of 2.C F~(4) is simply
connected. Therefore, c?.C F~(4) is 4-simply connected. It will turn out from
a result of [13] that c.CF~(4) is 3-simply connected, whence c2.CF~(4) is
also 3-simply connected.

However, C F'~(4) is not 2-simply connected; a 2-fold 2-cover of C F~(4)
is constructed in [3]. Let us denote it by 2- CF~(4). The reader may find
another construction for the extended grid 2 - CF~(4) in [1]. The 2-simple
connectedness of 2 C F~(4) follows from [9], where it is implicitly proved that
the Johnson geometry Cox(3,1), its quotient Cox(3, 1)/2, the Cameron-Fisher
extension CF~(4) and its double cover 2- CF~(4) are the only flag-transitive
extended grids of order 3.

We do not know if 2- CF~(4) can be extended further. In particular,
we do not know if c2.C F~(4) and c.CF~(4) are 2-simply connected.

Flag-transitive automorphism groups. The geometry c2.CF~(4)
admits G = Aut(M;;) as unique flag-transitive automorphism group. The
Borel subgroup has order 3.

The stabilizer G4 of a block acts faithfully as A7 on the 7 points of that
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block. The stabilizer G, of a point acts faithfully as L3(4) : 2, on the residue
[ = c.CF~(4) of that point. In fact, L3(4) : 2, is the unique flag-transitive
automorphism group of c¢.C F~(4).

Let Go,) be the stabilizerin Gy = L3(4) : 2; of a point of 'y = c.CF~(4).
Then Go; = (2* : Ly(4)) : 2 acts faithfully on '} = CF~(4), inducing on it
its minimal flag-transitive automorphism group.

Trivially, the stabilizer in Gy (respectively, in Go,;) of a block of T'g (of
I',) acts faithfully as Ag (as As) on the 6 (respectively, 5) points of that block.

2.4. Four families from quadrics in PG(3,q) (g odd)

Let @ be a non-degenerate quadric, embedded in PG(3,q), g odd. As usual,
we say that a line L of PG(3,q) is tangent to @ if LN Q is a single point and
that a plane a of PG(3,q) is secant for @ if @ N @ is a non-degenerate conic
(equivalently, if ot ¢ Q).

Let P* (respectively, P~) be the set of non-singular points of PG(3, q)
of square norm (respectively, non-square norm). If L is a line of PG(3,q)
tangent to @, then L — (LN Q) is contained either in P* or in P~. Therefore
the lines of PG(3,q) tangent to @ are partitioned in two families, call them
Lt and L7, where a tangent line L belongs to £* (respectively, to £) if
L —(LNQ) C Pt (respectively, if L — (LN Q) C P~). The tangent lines
contained in a secant plane belong to the same family. Therefore, the secant
planes are also partitioned in two families, call them IT* and II~, where a
plane a is in II* (respectively in II7) if the tangent lines on a belong to £*
(respectively, to £7). In fact, if @ = Q5 (q) and ¢ = 1 (mod 4) or @ = Q7 (q)
and g = 3 (mod 4), then II* consists of the planes a such that a* € P~; on
the other hand, when Q = Q3 (g) with ¢ = 3 (mod 4) or @ = Q7 (q) with
g =1 (mod 4), then II* consists of the planes o with a* € P*.

Let us take £* as set of points and P+ UTI* as set of blocks, defining
the incidence relation between a point and a block in the natural way, by
(symmetrized) containment. As 1-faces we take the {unordered) pairs of lines
L,M € L* meeting in a point of P* (namely, contained in a plane of II*),
stating that such a pair {L, M} is incident with L, M, with LN M € P* and
with the plane of II* spanned by I and M. An extended grid I of order ¢ —1
is obtained in this way. We denote it by T'g(Q).

Geometric properties. The Intersection Property holds in T'¢(Q) and
Tg(Q) is determined by its point-graph. The point-graph of T'g(Q) has diam-
eter § = 3, except when Q@ = Q¥ (3); in this case we have § = 2. The set of
blocks of T'g(Q) splits and T'g(Q) admits unfolding.

Covers. We do not know if T'g(Q) is simply connected when g > 5. Note
that, since the Intersection Property holds in T'g(Q) and T'g(Q) is determined
by its point graph, we should only check if all closed paths of the point-graph
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split in triangles.

When ¢ = 3, we have Tg(Q3(3)) = Cox(1,2) and T9(Q%(3)) = Sym(4)
and these geometries are simply connected.

Flag-transitive automorphism groups. We will only examine the
(unique) minimal flag-transitive automorphism group G of T'g(Q) and de-
scribe the Borel subgroup B, the block stabilizer G; in G and the stabilizer
Go,: of a point-line flag. The reader may easily obtain by himself further in-
formation on automorphism groups and parabolic subgroups, exploiting the
description of T'g(@).

Henceforth, = will always denote the polarity associated to Q. When
Q = Q3 (g) with ¢ = 1 (mod 4) and when Q = Q%(q) with ¢ = 3 (mod 4),
then there is an element f € PGL(3, q) leaving Q invariant and interchanging
the two families P* and P~ of external points. We set ¢ = f.

We have 4 cases to examine.

Q = @5(q) with ¢ =1 (mod 4).

We have G = 07 (g)(¢) = L2(q?).2 (for instance, when g = 5 we have
G = L5(25).2,).

The stabilizer G, of a block acts faithfully as PGL(2,q) on the ¢ + 1
points of that block. Whence the Borel subgroup is isomorphic to Z,_;. The
stabilizer of a point-line flag has the following structure: Go; = [B](¢%) =
Za(q-1), where ¢° is a suitable conjugate of ¢, of period 4 and with (¢*)* € B.

Q = Q3(q) with ¢ = 3 (mod 4).

We now have G = O (q)x {r) = Ly(g%) x2. As above, G, acts faithfully
as PGL(2,q) on the ¢ + 1 points of a block and B = Z,_,. However, we now
have Go; = [B] x Z,.

Q@ = Q%(q) with ¢ = 3 (mod 4).

We have G = (L2(q) x L2(q)){$), G2 = Lj(q) acting faithfully on the
q + 1 points of a block, B = Z(_1)/2 and Go1 = [B](¢°) = Z,_1, where
(¢°) = —1 and ¢° is a suitable conjugate of ¢.

Q = QF(q) with ¢ = 1 (mod 4).

We have G = (Lj(q) x Ly(q)) x (), G2 = La(q) acting faithfully on the
q + 1 points of a block, B = Z(,_1); and Go1 = [B] x Z; = Z,_;.

Quotients. When @ = Q3 (q) with ¢ = 3 (mod 4) and when Q@ =
Q% (q) with ¢ = 1 (mod 4) we can factorize Tg(Q) over 7 obtaining a flag-
transitive quotient, which we denote by T'g(Q)/2. Trivially, the minimal flag-
transitive automorphism group of T'9(Q)/2 is O3 (q) or L2(q)12, according to
whether Q@ = Q3(g) or @ = Q¥ (q).

On the other hand, when Q = Q3(g) with ¢ = 1 (mod 4) no flag-
transitive proper quotients can be obtained. We do not know of any flag-
transitive proper quotients of T9(Q) when @ = Q%(q) with ¢ = 3 (mod 4),
but for the exceptional case of ¢ = 3, which will be examined later.
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Special cases. Let @ = Q3(3). Then we have Tg(Q) = Cox(1,2) and
Tg(Q)/2 = Cox(1,2)/2. The geometry T'g(Q)/2 can also be constructed as
follows: we take @ as set of points and II* as set of blocks, the incidence
relation being the natural one; the 1-faces are the pairs of distinct points in
a common block.

Of course, we can repeat the above construction for T'g(Q3(3)/2) start-
ing from any elliptic quadric Q3 (g) (g odd) but we do not obtain an extended
grid when ¢ > 5; indeed we obtain an extended net of order (¢ —1,(g—1)/2),
which is nothing but ’a half’ of the Mdbius plane defined by @3 (g):

c N .
g—1 (g—1)/2

When Q = Q3F(3) we have Tg(Q) = Sym(4) (the smallest Minkowski
plane). We know from subsection 2.2 that this geometry admits a flag-transitive
(flat) proper quotient, namely Sym(4)/22.

When @ = Q%(5), the geometry Tg(Q) is a 2-fold cover of the example
obtained from Ly(5) in [5], call it T(L2(5)) (see also [6] (9.12(ii1))); the reader
may check that indeed we have I'(Ly(5)) = Tg(Q)/2. It is worth recalling
that the construction given in [5] for I'(L2(5)) exploits the following property
of Ly(5): the group Ly(5) is a finite 2-transitive permutation group where the
2-point stabilizer has order 2 and fixes no additional points. It is proved in
(6] (Lemma (9.13)) that Ss and L,(5) are the only permutation groups with
this property.

We will now give another construction for Tg(Q%(5)), starting from

$(4) instead of QF(5) (needless to say that the exceptional isomorphism
Ly(4) = Ly(5) is involved in this possibility). Let H = Q% (4) embedded in
PG@G(3,4) and take the lines of PG(3,4) not meeting H as points of the geom-
etry I' we are going to define. The points of PG(3,4) not in H and the planes
of PG(3,4) secant for H will be taken as blocks of I'. The incidence relation
between points and blocks of I' is defined by (symmetrized) containment. As
1-faces of ' we take the (unordered) pairs of points of I' in a common block
(namely, intersecting pairs of lines of PG(3,4) exterior to H). The reader may
check by himself (comparing automorphism groups and parabolic subgroups,
for instance) that the geometry T’ we have now constructed is nothing but
another model for T9(Q%(5)).

Of course, the above construction could be repeated in general, starting
from H = Q3I(s) with s = 2™, m > 2. We would obtain flag-transitive
geometries belonging to the following diagram:

Q—L—-—c:o
(s—2)/2s 1
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2.5. Cameron-Fisher extensions of odd type

Let C be a quadratic cone in PG(3,¢q), ¢ = 2™. Let v be the vertex of C
and let R be the radical line of C, namely the line through v containing the
nucleus of the conic * N C, for every plane 7 not on v. Let a and b be two
distinct points in R — {v}.

We can define an extended grid T of order ¢ — 1, as follows. C — {v} is
the set of points of I" and the blocks of " are the planes of PG(3, q) containing
exactly one of a or b. The 1-faces of T are the (unordered) pairs of points in
a common block.

We denote I' by the symbol CF~(g). A motivation for this notation will
be clear from the sequel.

Geometric properties. The Intersection Property holds in CF~(q)
and it is evident that the set of blocks splits. Therefore C F~(q) admits un-
folding. The point-graph has diameter § = 2, but CF~(q) is not determined
by its point graph, except in the trivial case of ¢ = 2 (note that CF~(2) is
nothing but the Coxeter complex of type C3). In fact, CF~(q) is an instance
of a Cameron-Fisher extension of odd type, as described in Example (9.12)
of [6].

Let us show how the construction of [6] (9.12) (see also [5]) can be recov-
ered in the above. Let us identify the star of @ in PG(3, q) with the projective
plane II = PG(2,q). Since the lines through a bijectively correspond to the
points of C (v included), the points of CF'~(g) can be viewed as points of II.
Let oo denote the point of II corresponding to v (namely, oo is the radical
line R of C). The planes of PG(3, q) through a appear as lines in II and those
not containing v are lines of I not through oo. The ¢? planes of PG(3,q) on
b but not on a form a family of ¢? non-singular conics in II, with nucleus oo.
Therefore CF~(gq) can be realized in the dual affine plane IT — {0}, as in [6]
and [5].

As we have remarked above, CF~(2) is the Coxeter complex of type
C3. Therefore, in the sequel we always assume q > 4, in order to avoid that
trivial case.

Covers and quotients. It is proved in [3] that, for every proper divisor
d # 1 of q, CF~(q) admits a d-fold cover. We denote it by d - CF~(q). We
have already remarked in Section 2.3 that 2- CF~(4) is in fact the universal
cover of C F~(4). We do not know if the same is true for q/2 - CF~(q) in
general, when g > 8. Proper quotients of C F~(q) can also be formed, but we
do not if flag-transitive geometries can be obtained in this way (when g > 4).

Flag-transitive automorphism groups. I' has just one minimal flag-
transitive automorphism group, let us call it G. We have G = 2?™*! : L,(q)
= (V : Ly(q)) : W where V : Ly(q) = ¢* : Ly(q) is the natural 2-dimensional
GF(q)-module for Ly(q) and W = Z, is contributed by an automorphism ¢
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of C interchanging the two points a and b. Needless to say that, if CF~(q) is
realized in a dual affine plane as explained above, then ¢ becomes a non-linear
transformation. For instance, if the conics forming one of the two families of
blocks are represented by equations of the following form:

:z:?, + 129 = u:z:f + ’U:L'g,
with u,v € GF(q), then ¢ may act as follows:
¢($1,$2, 33) = (zl, z2, %3+ (zlzz)qlz)'

The stabilizer G; of a block acts faithfully as L,(g) on the ¢ + 1 points
of that block. Hence we have B = Z,_,.

The reader may reconstruct by himself the structure of the full auto-
morphism group of CF~(q).

Remark

Of course, the previous construction can be generalized starting from any set
of lines of PG(3, q) on a given point v, forming a hyperoval 7 in the star of v.
Any of the lines forming 7 can be given the role that was of the radical line
R of C. Call that line R, again. Then T — R will play the role of C. However,
in order to have the flag-transitivity, we need an automorphism group of T
transitive on Z — R. The only examples that we know of this kind are those
arising from a cone C, giving rise to the geometries C F~(q) considered above.
Links with other topics. The construction we have given for C F~(q)
can also be generalized taking, instead of two points in R — {v}, an orbit X
on R of some subgroup of the automorphism group of C. In this way if £+ 1
is the size of X (and k > 2), we obtain flag-transitive extended nets of order
(g—1,k):
c N
o o o
q—1 &
In particular, when X = R — {v} (k = ¢ — 1) we obtain the Laguerre
plane defined on C.

2.6. Cameron-Fisher extensions of even type

Let T be a set of lines on a point v of PG(3,9) (¢ = 2™, m > 2) forming a
hyperoval in the star of v. For instance, we might have 7 = C U R where C is
a cone of vertex v and R is its radical line.

Let L, M be two distinct lines of 7 and a, b points of L and M re-
spectively, other than v. An extended grid I' of order ¢ — 1 can be defined
as follows. The points of PG(3,q) on T — (L U M) are the points of I'. The
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blocks of T are the planes of PG(3,¢) not on v and containing just one of the
points a or b. The 1-faces are the pairs of points of I' in a common block.

We denote I' by 'z, m(Z). When T — M (or T — L) is a cone and M
(respectively, L) is the radical line of that cone, then we write CF*(q) for
Trm(T).

When g = 4, we have 'y p»(T) = Sym(4) (the reader may check this
isomorphism directly, or he may obtain it from (8.3) of [6]). The properties of
Sym(4) are known from subsection 2.2. They are fairly different from those
of I'z, M(Z) when g > 8. Therefore, from now on we assume g > 8.

Geometric properties. The Intersection Property holds in I'z ar(T)
and the set of blocks splits. Hence 'z, pr(T) admits unfolding. The point graph
has diameter § = 2, but 'z p(Z) is not determined by its points graph (we
recall that we have assumed g > 8).

Trm(Z) is a Cameron-Fisher extension of even type, in the sense of
[6] (9.12(ii)). We can recognize the construction given in [6] (9.12(i1)) (see
also [5]) by the following trick. Take a plane m on L not on M and project
everything on 7 from b. Then the points of I'; p(Z) are represented by the
points of the affine plane 7 — L; the q2 — g blocks coming from planes on b are
represented by the lines of 7 not containing any of the points v or a; the ¢ —gq
blocks coming from planes on a are represented in the projective plane 7 by
q* — q hyperovals passing through both a and v. In particular, if Z — M is a
cone with radical line M, then these blocks form a family of ¢2 — q parabolas
in the affine plane 7 — L.

Flag-transitivity. We do not know which conditions must be satisfied
by Z, R and L, in general, in order to obtain the flag-transitivity for I'z a(7).
We will only prove the flag-transitivity of CF*(q).

This property of CF'*(q) is not clear at all if we consider the construc-
tion of CF*(q) in PG(3,q) by means of a cone C, of the radical line M of
C, a line L of C and points a € L and b € M. However, we may consider
the ’affine’ model of CF*(g), obtained by projection from b onto a plane =
on L not on M, as explained above. In this model the points of CF*(q) are
the points of the affine plane AG(2,q) and we can always assume that the
two families of blocks of CF*(q), call them B* and B~, consist of lines and
parabolas respectively, represented by the following equations:
y=rz+s,r,s € GF(q), with r # 0 (family B*);

y =rz?+s,7r,s € GF(q), with r # 0 (family B™).

It is now clear that what we need for the flag-transitivity of CF*(q) is
a bijection of the set of points of AG(2,q) interchanging the family of lines
B* with the family of parabolas B*. The following bijection does the job we
need:

. (:l:,y) — (y’zz)'
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Therefore, a flag-transitive automorphism group of C F*(q) exists, with
the following structure: G = ((AGL(1,q) x AGL(1,q)) : Z,).2, where m is
defined by the relation 2™ = gq.

The stabilizer G, of a block acts faithfully as AGL(1,q) : Z,, on the q
points of that block. The Borel subgroup is isomorphic to Zy,.

Quotients and covers. It is clear from the above that C F*(g) admits
proper quotients (in particular, flat quotients); indeed, we can factorize over
groups of translations of given direction of the affine plane in which CF*(q)
is realized. However, we do not know any flag-transitive proper quotient of
CF*(q) (except when g = 4, of course; but we have assumed g > 8).

As for covers, we do not know anything on them.

Links with other topics. The extended grids constructed in this sec-
tion and in the previous one can also be embedded in the following larger
"Laguerre structure’, call it £(Z): take Z — {v} as set of points and the planes
not on v as blocks; pairs of points in the same block are 1-faces. £(T) belongs
to the following diagram:

c Af*

*————0

q g-1
where Af* denotes the class of dual affine planes. When ¢ = 2 or 4, then
L(7Z) is flag-transitive.

2.7. An example in PG(2m — 1,2)

Let X be an m-dimensional subspace of PG(2m — 1,2) (m > 2). We define
a geometry [, (2) over the set of types {+,0,~}, as follows. The element of
type 0 are the m-dimensional subspaces of PG(2m — 1,2) that do not meet
X. The elements of type + (of type —) are the m + 1-dimensional subspaces
of PG(2m — 1,2) (the m — 1-dimensional subspaces of PG(2m — 1,2)) that
meet X in just one point (that do not meet X). The incidence relation is the
natural one, inherited from PG(2m —1,2). The geometry T',»(2) has diagram
as follows:
*

c c
—— o o

g—2 1 q—2
with ¢ = 2™ — 2. Let I';,(2) be the shadow geometry of T',,,(2) with respect to
the central node of the above diagram. The geometry I',,(2) is an extended
grid of order g — 2.

Note that I';(2) = Sym(4).

Geometric properties. The Intersection Property holds in I',,(2) and
[',n(2) is determined by its point-graph. The point-graph of I',,(2) has diam-
eter § = 2m — 2.
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Flag-transitivity. The type-preserving automorphism group of T'z(m)
is the stabilizer 2™ : (L;n(2)X Lyn(2)) of X in Lym(2). The projective geometry
PG(2m — 1,2) admits a non-degenerate polarity = fixing X. That polarity
defines an automorphism of T,,(2) permuting the two types + and —. Hence
7 1s an automorphism of I',,(2) and we have

Ant(T(2)) = 27 (Lin(2) X Lon(2)).(7) = 2™ 2 (Lyn(2) X Lm(2))2

acting flag-transitively in I',,(2). The full automorphism group of I';,(2) is its
unique flag-transitive automorphism group.

The stabilizer of a block of T' is 22™~! : (L,,_1(2) x Ln(2)), acting as
ASL(m,2) = 2™ : L,(2) on the 2™ points of that block.

Links with other topics. The above construction can be repeated
in PG(2m, q), for every prime power g, producing a flag-transitive geometry
I'n(g) belonging to the following diagram:

L

* ——————0
qg—1 s 1
with s + 1 = (¢™ — 1)/(g — 1). The unfolding I',,(q) of T',x(g) is a truncation
of a geometry of rank 2m — 1 belonging to the following diagram (see [10],
Example 6):
Afr Af

@ rrun —— @ P rrrns J ——

Remark

The above example has been suggested to us by E. Shult (private communi-
cation).

Problem

We have I';(2) = Sym(4). Hence I'y(2) admits a flat flag-transitive quotient
(subsection 2.2). Is the same true in ', (2) if m > 2 7

2.8. A flat family
Let G = AGL(l,q), withg=2™ and m > 2. Let S = Z,_; < G2 and let Z
be another copy of Z,_; with ZN G; =1 and let us form the direct product
A= G2 x Z. :

Let ¢ be an involutory automorphism of A such that (5, 5¢) = §5¢ =
S x Z. Trivially, ¢t normalizes the (elementary abelian) Sylow 2-subgroup of
G, say V. Therefore it centralizes some non-trivial element v € V.

Let us set Go = (S x Z)(t), G; = (v,t) and G = (G, X Z)(t). Define
P, = G; N Gy, for {1,7,k} = {0,1,2}. It is easily seen that P, P, P; form
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a parabolic system in G, with trivial Borel subgroup B = 1. The associated
chamber system is a geometry, in fact an extended grid of order g — 2, let us
call it I'. This extended grid is flat.

Furthermore, we have G; = (P;, P,), for {i,7,k} = {0,1,2}. Namely,
Go, G,, G, are stabilizers of a point, a line and a block of ', respectively, in
the automorphism group G of I'. In particular, the stabilizer of a block acts
faithfully as AGL(1, ¢) on the ¢ points of that block.

Special cases. The flat quotient Sym(4)/2? (see subsection 2.2) is ev-
idently an instance of the above. In this case we have G, = AGL(1, q) = A4,
Z = Z3 and t can be chosen to act as follows:ifu € V,z € S,y € Z and «a
is an isomorphism from S to Z, then t maps uzy onto u’z2a(z?)y?.

A similar choice can be made for t whenever m is even, say m = 2k.
Indeed in that case we can define t as follows:

t:ury — uz":z:z"(.x(:z:z")y'l

whereu € V,z € S,y € Z and « is the isomorphism from S to Z, as above.
Therefore, a flat extended grid of order ¢ — 2 exists for every ¢ = 2™,
m even.

Problems

(1) How to construct an element t with the required properties when g = 2™
with m odd ?

(2) We know only one flag-transitive flat extended grid that cannot be
obtained by a construction as above, namely the proper quotient of the
C3 Coxeter complex. Are there other examples ? We will prove in [13]
that the answer is negative if the automorphism group G is assumed to
be solvable.

(3) What about covers of flat extended grids obtained as above ?

3. Summary

We finish this paper summarizing some information on the examples of the
previous section. For every example or family of examples we recall its name,
the rank, the order, the size of the blocks and the action on blocks, but only
considering stabilizers taken in minimal flag-transitive automorphism groups.
We omit to mention flag-transitive quotients and covers, even when we know
they exist.

Cox(n, s). Rank n + 2, order s. Blocks: size n + s + 1, action Sp4.41.

Sym(n + 3). Rank n + 2, order 2. Blocks: size n + 3, action Apys.
c2.CF~(4). Rank 5, order 3. Blocks: size 7, action A7.

c¢.CF~(4). Rank 4, order 3. Blocks: size 6, action As.
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Tg(Q). Rank 3, order ¢ — 1 (g odd prime power). Blocks: size g + 1; action:
PGL(2,q) if @ = Q3 () and Lu(q) if @ = Q3 (a).

CF~(q). Rank 3, order ¢ — 1 (g = 2™). Blocks: size ¢ + 1, action L,(q).
CF*(q). Rank 3, order q — 2 (g = 2™). Blocks: size g, action AGL(1,q).
T'm(2). Rank 3, order g — 2 (g = 2™). Blocks: size g, action ASL(m,2).

Flat examples (subsection 2.7). Rank 3, order ¢ — 2 (g = 2™). Blocks: size g,
action AGL(1,q).
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Root lattice constructions of ovoids

G. E. Moorhouse

Abstract

Recently the author {5] has constructed new ovoids in OF (p)
for p prime, using the Eg root lattice, generalising a construction of
Conway et al. {1]. Here we present a nine-dimensional lattice which
greatly simplifies the description of these ovoids.

1. Introduction

An orthogonal space is a vector space V equipped with a quadratic form
Q. We consider only finite-dimensional vector spaces over a finite fleld F =
GF(q). A singular point in such a space is a 1-dimensional subspace (v)
such that Q(v)=0. Usually we take @ to be nondegenerate, in which case
(V,Q) is called an Oym—1(q)-space if dim V =2m—1, or an O%,(q)-space if
dim V = 2m, using superscript + or — according as @ has Witt defect 0 or
1. An ovoid in an orthogonal space (V, Q) is a set O consisting of singular
points, such that every maximal totally singular subspace of V contains a
unique point of O. In a space of type 03,.(¢), O2m-1(gq) or O3,,_2(g), an ovoid
is equivalently defined (see [3], [7]) as a set of g™ ! + 1 singular points of which
no two are orthogonal. Ovoids are not known to exist in orthogonal spaces
of 9 or more dimensions. Ovoids in O3(q) and in Oy (q) necessarily consist of
all singular points; viewed projectively, these are nondegenerate plane conics
and elliptic quadrics in projective 3-space. We emphasise that the latter are
discrete analogues of classical round objects in Euclidean space, and so the
name ‘ovoid’ seems well-deserved. Ovoids in O} (q) (including ovoids in Os(q)
as a special case under the natural embedding) are equivalent (see [4]) to
translation planes of order ¢ with kernel containing GF(q). These are known
to exist in great abundance, and in general do not appear to originate from
any Euclidean ‘round’ objects.

The known ovoids in OF (g) are listed in [4], [1] and [5]. The majority
of these occur in OF (p) for p prime, and are constructed by taking lattice
points on a certain Euclidean sphere, then reducing modulo p, as we shall
describe in Sections 2 and 3. It is intriguing that such discrete geometric
objects would appear to owe their existence to properties of the Euclidean
metric (seemingly requiring the Cauchy-Schwarz inequality in R® or R®), and
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again justice is done to the term ‘ovoid’.

2. An Eight-Dimensional Description

We first indicate, without proof, the ovoid construction from 8-dimensional
lattices. This description remains the most useful for computer implementa-
tion.

Let E be the root lattice of type Ejg; that is, E consists of all vectors
3(a1,as,...,a8) with a; € Z such that a; =a;= -+ =as mod 2 and Y a; =0
mod 4. A detailed description of E, including the following properties, may be
found in [2]. Let p be any prime. Then E = E/pE is an 8-dimensional vector
space over F'=GF(p), and for v € E we write v = v+ pE € E. We call |jv[?
the norm of v € E, and since E is an even lattice, [|[v||? € 2Z. For any positive
integer m, the number of vectors in E of norm 2m is 24003(m) = 240 &2,
summing over all positive integers d dividing m. In particular £ has 240
vectors of norm 2, the root vectors of E. Define Q : E — F by Q(v) = 3[lv|[?
mod p. Then @ is a nondegenerate quadratic form on F with Witt defect 0,
and Q is preserved by the Weyl group W = W (Ej).

The binary ovoids of Conway et al. [1] are defined in E for p odd by

O25(z) = O2p(Zz +2E) = {(7) : |[v|* =2p, v € Zz+2E}

where z € E such that 1[z|? is odd. The sphere of norm 2p (radius /2p,
centre 0) has exactly 2(p® + 1) points of the lattice Zz +2E, and these occur
in p® + 1 antipodal pairs. Reducing modulo p, we obtain p* + 1 points (one-
dimensional subspaces) (v), which are singular since Q(7) = ;(2p) = 0 mod p.
Moreover [1] no two points of O, ,(z) are orthogonal, so Oy ,(z) is an ovoid.
Since there are just 120 choices of sublattice Zz +2E C E with ||z[* odd,
all equivalent under W, we obtain 120 binary ovoids in OF (p), all of which
are equivalent. We may take z € E to be our favourite root vector, and then
the stabiliser W, = W(E7) = 2 x Sps(2) acts on the ovoid Oy 5(z). (Remark:
if € E is a root vector, then Zz +2F = Zz ®2E; where E3 is the dual of
E; = ENz? in z'. Thus the binary ovoids are computable from a knowledge
[2] of the ‘shells’ of E3.)
More generally, for primes r # p we define

Orp(z) = Orp(Zz+rE) = | {(6) : vl =2i(r—i)p, vE Z:z:—}JrE}
1<i<( 3]

where z € E such that 2||z|? is a nonzero square modulo 7. If 7 > p, it some-
times happens that O, (z) = {(0)}, but in all other cases O, p(z) is an ovoid
in E, called an r-ary ovoid in OF (p). In Section 3 we will see an explanation
for the ‘failed ovoids’ of the form {{0)}. The cases r € {2, 3} give the binary
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and ternary ovoids of Conway et al. [1]; for general r the above definition is
a slight simplification of that given in [5]. By varying the choices of r and
z, we expect from the computational evidence available that the number of
isomorphism classes of r-ary ovoids in OF (p) is unbounded as p — oo, but
this has not been proven.

The above definition of O, () requires that we take lattice points on
a union of |%| spheres in R® In Section 3 we shall interpret these spheres
as hyperplane sections of a single sphere in R®, achieving a more concise
definition of O, () and a simplified proof that in fact we obtain ovoids.

3. A Nine-Dimensional Description

Throughout this section, r and p are distinct odd primes, which allows for a
simpler presentation. The industrious reader will find that our presentation
may be adapted to the general case; however the case » =2 has already been
treated by the description of the binary ovoids in Section 2, and the case p=2
is trivial since OF (2) has a unique ovoid.

For each odd prime p, define a nine-dimensional Euclidean lattice by

A=A(p)=V2E @ \PZ.

That is, A consists of vectors v/2e + Az with e € E and A € Z, where
z=(0,0,...,0,,/p), and [[v/2e + Az|?> = 2[le|[* + pA?. Note that A admits a
group of isometries G = 2 x W generated by W =W(FE;) acting naturally
on the first eight codrdinates and fixing z, together with the reflection in the
hyperplane z*- = (E).

Now let » be an odd prime distinct from p. The quotients A/pA and
A/rA are 9-dimensional vector spaces over GF(p) and GF(r), respectively.
Each inherits from A a G-invariant quadratic form obtained by reducing
2|le||? + pA? € Z modulo the corresponding prime. The quotient A/rA is
a (non-degenerate) Og(r)-space.

However, the orthogonal space A = A/pA is degenerate, consisting of an
O¢# (p)-space over a 1-dimensional radical (Z) = (z + pA); projectively, A/pA
is a ‘hyperbolic cone over a point’. From the definition given in Section 1, we
see that two types of ovoids are possible in A = A/pA:

(i) The singleton {(2)} is an ovoid in A since every maximal totally sin-
gular subspace of A is 5-dimensional and contains (z). We call this the
degenerate ovoid of A.

(ii) Any set O consisting of p®+1 mutually nonperpendicular singular points
of A is an ovoid in A. Such an ovoid does not contain (z) and is called
nondegenerate. For such an ovoid, { ()+(z) : (v)€ (’)} is an ovoid in
the OF (p)-space A/(Z), and conversely, ovoids in Og (p) lift to ovoids
in A.
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Our construction in fact gives ovoids in A = A/pA of both types (al-
though degenerate ovoids never occur for » < p), and thereby ovoids in OF (p)
as described in (ii) above. Let m, and 7, denote the natural maps from A
to points of A/rA and A/pA respectively. That is, for v € A~rA, we have
7.(v) = (v+rA) < A/rA, and similarly for p in place of r. Consider the
points of the lattice A which lie on the sphere of radius r,/p, other than the
‘poles’ +rz, denoted thus:

Apap = {’UEA : ||v||2:r2p}\{:|:rz}.

Our main result, as follows, will be proven later in this section.

Theorem 3.1 (i) m,(A;2p) is the set of singular points of A/rA outside
the hyperplane H = =, (E).
(ii) Let X = (z+rA) be a singular point of A/rA outside H, and let
X = {v € Ayap 1w (v) :X}. Then wp(X) is an ovoid of A/pA.
(iii) An ovoid of the form mp(X) as in (ii) is nondegenerate whenever r < p.
Ifr>p then m,(X) Is nondegenerate for some X, X.

The situation of Theorem 3.1 may be appreciated from Figure 1, where
typical points of the quadric in A/rA outside the hyperplane H, are denoted
by e, * and ¢. These points are lifted back to the sphere A,2, and then
projected down to the degenerate quadric in A/pA, obtaining in each case
an ovoid, although the ovoid obtained from ¢ is degenerate. Observe that, as
pictured, the lattice points in A2, lie on certain hyperplanes of R® parallel
to z*.

We further illustrate the construction with an example in which p=3
and r=5. Now A2, = {\/ie:I:z 1 e€E, ||e||2::36} U {v2e+3z : ec E,

el = 24}- For X == (\/—2—(26,02) + 32) we obtain

X = {i(ﬁ(26;02)+3z), +(VB4(~T7,3% -5,5)+z),
+(v/3(47,—1%,0%)+2), }

where ‘...’ denotes similar vectors obtained by arbitrarily permuting the first
six coordinates of E, and permuting the last two codrdinates of E. Then
|X| =56 and X projects to a nondegenerate ovoid of size 28 in A/3A, antipodal
points of X giving the same ovoid point. Choosing X' = (\/5(6,07) +z),
however, we obtain X’ = {:I: (\/5(6, 07)+z) }, which projects to the degenerate
ovoid of A/3A.

Observe that by definition if u = v/2e 4+ Az € Az, then [u[? = 2le[*+
pA2=r?p, which implies that [A\| <7 and X is odd, so that m,(u) is a singular
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Figure 1. Two Projections of A2,

point of A/rA which does not lie in the hyperplane H = ,.(E); this proves
half of conclusion (i) of Theorem 3.1.

Lemma 3.2 Ifu-v =0 mod p for some u,v € A,2, such that 7.(u) = n.(v),
then u = tv.

Proof. The hypotheses imply that 4w — av € rA for some o € Z not divisible

by r. Thus 2auv = [[ul?+ ?|[v[*—[lu —av|®* = 0 mod 7?, so uv = 0
mod 72, Also u-v = 0 mod p by hypothesis, so u-v = 0 mod r?p. But |u-v| <
[[u[l[lv]l = r%p by Cauchy-Schwarz, so [u-v| = 0 or r?p. If [u-v| = r?p, then

again by Cauchy-Schwarz, u = v and we are done. Otherwise uv-v = 0.
But it is easy to see that u-v must be odd. For we have u = v/2e + Az, v
V2¢' + pz for some e,¢’ € E and odd integers A, p satisfying 2| + pA*
2|e’[[? + pu? = r?p; thus u-v = 2e-¢' + pAp = 1 mod 2, a contradiction. [
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Define Al = A2, N (pA+Zz), the set of all vectors in A2, which
project to the radical of A/pA.

Lemma 3.3 (A2 + p*|AL | = 2r3(r* — 1)(p° + 1).

Proof. This is proven in exactly the same way as Lemma 2.4 of [5], using
the multiplicativity of o3, and the fact [6] that E @ E has 48007(m) vectors
of norm 2m for every positive integer m. |

A cap in an orthogonal space is a set of singular points which are
mutually nonperpendicular. Any cap in Of (p) has size at most p* + 1, and
caps attaining this maximum size are ovoids (see [3], [7]). Consequently, caps
in A/pA have size at most p* + 1, and caps attaining this maximum size are
nondegenerate ovoids; the radical point is a maximal cap of size 1.

Let S be the set of singular points of A/rA. Well-known counting argu-
ments give |S| = (r®* —1)/(r —1) and [SN H| = (r* +1)(r* — 1)/(r — 1) since
the hyperplane H is of type Of (r); thus [S~H| = |S| — [SN H| = r3(r* - 1).
By Lemma 3.2, for each point X € &~ H, its preimage X = {v €Ay
m(v)=X } (which could conceivably be empty) projects to a cap 7, (X ) of

A/pA. Also [m,(X)[ = [(2)| =1 if X C Als,; otherwise X C A,2,~Als, and

r‘p)
0< |7rp(X )| < p®+1. Furthermore, Lemma 3.2 shows that the projection

X o7y (X ) is two-to-one. Therefore

t — ! — 3
M| = [Alay| = [Arrp~ALe| = 3 |X| < 3 2P°+1)
XGS—H:' XGS—H:'
,t'gA,_,p—A,l2 ngﬂp—Ar’p

= 2(p* +1)|S~H| - 2(° 4 D{X eS~H : X C AL}
=2+ 1)r3(r* —1) — (p* + 1)|Als,,

b

in which equality holds by Lemma 3.3. Therefore .71',, (X ). = p°® +1 whenever

X C A;2p~ A, thereby proving (i) and (ii) of Theorem 3.1. It is clear that

r2p = @ whenever r <p, and that in any case A,2; 2 ALz, whence not all

ovoids 7, (X ) are degenerate, so (iii) follows as well, completing the proof of
Theorem 3.1.

One checks without difficulty that for = v/2e + Az € A2, the ovoid

of A = A/pA constructed from z as in Theorem 3.1, projects to the ovoid

O, p(e) of A/Z described in Section 2, in the nondegenerate case (e ¢ pE).

4. Further Remarks

Let X, X, etc. be as in Theorem 3.1, and as before, let G = 2 x W be the
isometry group of A, having natural orthogonal representations on both A/rA
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and on A/pA. The stabiliser Gx acts on the ovoid =, (X ), with kernel of order
2 or 4 in the nondegenerate case. In general, however, the stabilisers of these
ovoids in the full orthogonal group, remain undetermined; cf. [5].

It is disappointing that the r-ary ovoid construction does not seem to
work in OfF (p°) for e > 1. This contrasts sharply with the situation in Og (p®),
where ovoid constructions generally proliferate as e increases. The problem
with OF (p°) is more than a lack of inspiration: although OF (p) has at least one
Spe(2)-invariant ovoid for every odd prime p (say, (’)z'p(%(ls)), and evidently
many more as p increases), we have checked that no Spe(2)-invariant ovoids
exist in OF (p®) for p° € {22, 23,24 3% 33, 52}. (For p® =9, this is proven in [1].)

Can variations of the above constructions give new ovoids from other
lattices, or perhaps even nonexistence results for higher-dimensional ovoids?
Certainly any ovoid may be lifted back from L/pL to a lattice L, with great
freedom in the choice of lifting and of L itself. We cannot expect all such
preimages to be as elegant as the spheres arising in our construction; never-
theless can it be shown that every ovoid lifts to some subset of a lattice with
high density? And could the apparent lack of ovoids in Ofy(q) be due to a
lack of a suitably dense lattice packing in R!°? These are mere speculations.
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Coxeter groups in Coxeter groups

B. Miihlherr

Abstract

An automorphism of a Coxeter diagram M leads in a natural way to
a Coxeter subgroup of the Coxeter group of type M. We introduce
admissible partitions of Coxeter diagrams in order to generalize this
situation. An admissible partition of a Coxeter diagram provides a
Coxeter subgroup in a similar way. Our main result is a local criterion
for the admissibility of a partition.

1. Introduction

We may ask in general which Coxeter groups arise as subgroups of a given
Coxeter group. This question is of course far too general. However, there are
Coxeter groups which arise canonically as subgroups of a given Coxeter group.
Let for instance (W, S) be a Coxeter system and let S be a subset of S, then
({S1), S1) is again a Coxeter system.

Our purpose here is to introduce another way to obtain Coxeter sub-
groups in a given Coxeter group. In the example above we considered residues;
the procedure, which will be treated here, has also a geometric background.
We will deal with subcomplexes of the Coxeter complex which behave like
subcomplexes fixed by a polarity. We do not go into the details concerning
these geometric aspects. However, our procedure is motivated by the following
consideration:

Let I be a set, let M be a Coxeter diagram over I and let (W, S) be the
associated Coxeter system. Let [ : W — N, denote the length function. Let
T be a group of automorphism of M and let [ be the set of orbits of T in
I. Assume that for each o € I we have that M, := M |axe is spherical and
let r, denote the element of maximal length in W, = (s;[¢ € ). The group
I' acts on W as a group of automorphisms which preserves the length. It is
easy to see that r, is fixed under the action of T' for each o € I. If we put
R = {ra|e € I} then one can show that W = (R) is the subgroup of W fixed
by I'. Actually we can prove the following important property:

(A) If b € W and o € I then I(1s;) = (1) — 1 for each i in @ or I(ws;) =

l(w) + 1 for each ? in a.

It can be shown that (W, R) is a Coxeter system. In the proof of this fact we
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do not need the group I, but only the property (A). So the property (A) will
be taken as an axiom in our definition of admisstble partitions.

Admissible partitions: Let I, MW, S and [ : W — N, be as above. Let
Ibea spherical partition of I with respect to M; i.e. M, is spherical for each
a € I. For a € I let r, be the element of maximal length in W, and put
R = {rq|a € I} and W = (R). The partition I of I is said to be admissible
with respect to M if the property (A) is satisfied.

Here are our main results:

Theorem 1.1 Let I be a set, let M be a Coxeter diagram over I. Let I be
an admissible partition of I with respect to M. Then the pair (W, R) is a
Coxeter system, where R and W are as above. The type of (W,R) is the
Coxeter diagram M over I, where 1hag = |(rars)| for each pair (o, 8) € I x I.

Remark: Observe that one only has to consider the oeU 3-residue if one wants
to compute myg.

Theorem 1.2 Let I be a set and let M be a Coxeter diagram over I. Let |
be a spherical partition of I with respect to M. The following are equivalent:

(1) The partition I is admissible with respect to M.
(2) For each pair (o, 8) € I x I the partition {a, 8} of & U 8 is admissible
with respect to M(aug)-

Theorem 1.3 Let I be a set and let M be a Coxeter diagram over I. Let
(W, S) be the Coxeter system of type M. Let T’ be a group of automorphisms
of M and let I be the set of orbits of ' in I. Let J be the set of all a € I with
the property that M, is spherical. For 3 € J let rg be the element of maximal
length in Wg. The group I' acts on W as a group of automorphisms which
preserves the length. The subgroup W := {w € W|w? = w for all g € T} is
the group generated by the rg where 3 runs through J. Ifweput J = Uges B
then J is an admissible partition with respect to M;.

This paper is organized as follows: In section 2 we recall some basic
results about Coxeter systems. In section 3 we first prove some preliminary
lemmas and fix some further notation concerning admissible partitions; the
main goal of section 3 is to prove Proposition 3.5 which provides Theorem 1.1
and Theorem 1.2 as corollaries. In section 4 we will prove Theorem 1.3 .
Examples and applications of admissible partitions will be given in section 5.
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2. Preliminaries

Systems of involutions: Let I be a set. A system of involutions over I is a
pair (W, S) consisting of a group W and a set S of involutions in W satisfying:

1. {(S)=W

2. There is a bijective mapping 1 — s; from I onto S.
Let (W, S) be a system of involutions over I and let F' denote the free monoid
on I. For f = 1113...14 € F we put L(f) = d and Sf = 84,845 -..8iy € W. Let
w € W. A representation of w in (W, S) is a word f € F with the property
that s; = w. The length of w in the system (W, S) is the minimum of all
L(f) where f runs through all representations of w. We denote the length of
w by l(w). A representation f € F of w € W is called reduced if we have
L(w) = l(w).
Coxeter diagrams: Let I be a set. A Coxeter diagram over I is a mapping
M :IxI~— NU/{oo} such that

1. M(3,7)=M(j,2) > 2fori# 3

2. M(i,i)=1forallie I
For M(i,7) we will write m,;. Let (W, S) be a system of involutions over I.
Its type is defined to be the Coxeter diagram M over I where the m;; are
defined by m;; = [(s;s;)|. Now we will fix some notation concerning a system
of involutions of a given type: Let I be a set. Let (W, S) be a system of
involutions over I and let M be its type. Let F denote the free monoid on 1.
If my;; # oo, then p(3,7) € F denotes the word .. .4515 of length m,;.
Let J C I. We put Sy = {s;[7 € J},W; = (S;) and My = M |;xs. It is clear
that (W, S;) is a system of involutions of type Mj.
Coxeter systems: Let I be a set and let M be a Coxeter diagram over I. A
Coxeter system of type M is a system of involutions of type M which satisfies
for each w € W the following axioms:

A For i € I we have l(ws;) = l(w) + 1 or l(ws;) = l(w) — 1.

B If4,j € I and l(ws;) = l(w) — 1 = l(ws,), then m,; # oo and thereis a

reduced representation of W ending with p(3, 5).

Though this characterization of Coxeter systems is probably well known,
we will give a sketch of a proof:
Proposition 4 in [1] chap. 4 no 1.5 provides property A. That property B holds
in Coxeter systems may be seen from [5] Theorem 2.16 and the observation
that the elements of maximal length in finite rank 2 Coxeter groups have the
reduced representations p(z, 7) and p(J,1).
For the other direction one uses induction on {(w) to see that two reduced rep-
resentations of w € W can be transformed from into each other by elementary
M-operations of type (II). Moreover, one shows by induction on L(f) that a
non-reduced word f € F can be shortened by elementary M-operations. This
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shows that (W, S) is a Coxeter system. (See [2] for the definitions and further
details.)

In the rest of this section, we fix some notation and state some prelim-
inary lemmas concerning Coxeter systems. For the proofs and further infor-
mation we refer to [8] and to [5].

From now on let I be a set and let M be a Coxeter diagram over I. Up
to isomorphism there exists exactly one Coxeter system of type M (see for
instance [2}), so let (W, S) be 'the’ Coxeter system of type M.

We start with a definition:

Definition 2.1 1. Let w € W. We put It(w) = {z € I|l{(ws;) = [(w)+1}
and I~ (w) = {# € I|l(ws;) = l(w) — 1}.
2. Let J C I and let wyp € W. We put Ry(wo) = woWj. The set Ry(wp) is
called the J-residue of wy.

Lemma 2.2 Let w € W; and let 4,35 ...74 € F be a reduced representation
of w. Then 1 € J for all 1 < k < d. The system of involutions (W;, S;) is
the Coxeter system of type Mj.

The first assertion follows from [5] Lemma 2.10, the second follows from Corol-
lary 2.14 in [5].

Lemma 2.3 Let J C I and wo € W, then there exists a unique element w*
in Rj(wo) with the property that l(w*) < l(w) for all w € Rj(wo). For each
wy € Ry(wo) we have l(w;) = I(w*) + {(w*1w,).

For a proof see [5] Theorem 2.9.
Remark: For given wo € W and J C I we denote this element by Py(wo). It
is the 'projection’ of the unit element onto the J-residue of wy.

Lemma 2.4 Let J C I and let wo € W. Then the following are equivalent:
P1 Pj(wo) = wo
P2 J C I't(wp)
P3 l(wowy) = l(wo) + I(wy) for all wy, € W.
P4 l(wy) = l(wo) + l(wg'ws) for all wy € Ry(wo).

Proof. Pl = P2: Pj(wo) = wo implies l(wps;) > I(wo) for each j € J.
From axiom A it is seen that [(wos;) = l(wo) + 1 for each 7 € J, hence
J C I'*(wo).

P2 = P1: Let J C I'*(wp) and put w; = Py(wo). From lemma 2.3 it follows
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that I(wo) = I(w1) + {(wi wo) and I(wo) + 1 = I(wos;) = I(w1) + I(wi wos;)
for each j € J. We obtain {(w; woes;) = I(wy'wo) + 1 for each j € J, hence
J C It (wi'wp). Since wi'wy lies in W it follows that wy wp is the identity.
P1 = P4: This is the second assertion of lemma 2.3.

P4 = P1: P4 implies l[(w;) > I(wo) for each wy € Rj(wo), hence Py(wo) = wo.
P4 & P3: This is obvious. m

Definition 2.5 Let J C I and let w € W. We say that J is admissible at w
if JC It(w)or J C I™(w).

Let I be a partition of I and let w € W. The partition I is said to be
admissible at w if « is admissible at w for each o € I.

Lemma 2.6 Let J; CJ C I and w € W. Put w' = Pj(w) and w" = w' w.
Then we have:
J1 CIt(w) & J; C It (w")

and
Jl _C_ I-('LU) i=4 Jl g I'(w")
In particular: J; is admissible at w if and only if it is admissible at w".
Proof. This is an easy consequence of P4 in lemma 2.4. o

Lemma 2.7 Let J C I. Then the following are equivalent:
S1 Wy is finite.
S2 There exists a unique element w* in W such that {(w*) > l(w) for all
we Wj.

Remark: If J C I satisfies the equivalent conditions of lemma 2.7 then the
element w* of condition S2 is an involution. It will be denoted by r;. If I
satisfies the conditions of lemma 2.7, then the diagram M is called spherical.

Lemma 2.8 Let wo € W and let J C I. Then the following are equivalent:
PS1 J C I™(wo)

PS2 W; is finite and l(wo) = l(wory) + I(rJ).

PS3 W; is finite and Py(wo) = wory.

Proof. PS1 = PS2: This follows from [5] Theorem 2.16.

PS2 = PS3: Let wy; € Ry(wo) then |l(wo) — l(w1)| < I(rs). This shows that
l(w1) > l(wo) — l(ry) = l(wory), hence wory = Py(wp).

PS3 = PS1 : Since J C I"(r;) and Pj(wo) = wory, it follows from lemma
2.6 that J C I~ (wor}) = I~ (wo). m]
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3. Admissible Partitions

Let I be a set and let M be a Coxeter diagram over I. A partition I of I is
called spherical with respect to M if M, is spherical for all o € I.

We will now fix some notation concerning spherical partitions which will be
valid throughout the rest of this section: Let I be a set, let M be a Coxeter
diagram over I and let I be a spherical partition of I with respect to M.
Let (W, S) be the Coxeter system of type M. We put R = {rq|a € I} and
W = (R). Thus (W, R) is a system of involutions over I. Let [ : W — N,
denote its length function (see section 2) and let M = (Map)(a,p)cixi De its
type. Let F denote the free monoid on I. If Tag # 0 let fla,B) € F be
defined to be the word ...aBaf of length mag and let (o, ) be the word

..afaf of length rhag — 1.

Definition 3.1 Let [ be a spherical partition with respect to M.
1. The partition I is said to be admissible if [ is admissible at each 1 € w.
2. Let @ € W and let f = oa...aq € Fbea representation of 1 with
o; € 1. We say that the representatlon f is compatible if the following
holds:

(D) = 3~ U(ra)
k=1

The following three lemmas are immediate.

Lemma 3.2 Let [ be an a,dmissible.partition of I. Let J C I and put J =
Uge 5B Then the partition {B|8 € J} is an admissible partition of J with
respect to My .

Lemma 3.3 Assume |I| = 2 with I = {a, 8}. The following are equivalent:
a The partition {I,, Ig} is admissible.
b If is in W, then a representation f € F of W is reduced if and only if
it is compatible.

Lemma 3.4 Let M be a spherical diagram over I and let I= {a,B} be a
partition of I. Then thag # oo. Moreover: The partition I is admissible if and
only if the words p(e, 8) and p(8, ) are compatible representations of r;.

Proposition 3.5 Let M be a Coxeter diagram over I. Let I be a spherical
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partition such that for each pair (o, 8) € I x I the partition {a,8} of a U B
is admissible with respect to M(aup). Then we have for all % € W:
Al A representation f € F of W is reduced if and only if it is compatible.
A2 Let o, € I and put & = Paug)(b). Then we have: 5 € W , I(4) +
(571) = l(w) and 7' € (rq,7s).
A3 The partition I is admissible at .
A4 i(tbra) = Z('LT)) ~1 if and only if a C I~ ().
A5 [(iwry) = (W) + 1 if and only if & C I'*(w).
A6 If a,f € I such that « UB C I~(®), then there exists a reduced
representation of w in F' ending with the word (e, B).

Proof. First observe that if o, 8 € I are such that Maup is spherical it fol-
lows that p(a, 8) and p(B, a) are compatible representations of r(aug). In this
case we have also that §(a, () (resp. ¢(83,a)) is a compatible representation
of riaup)ra (resp. raup)rs) of length Mg — 1.

The proof goes by induction on (1) :

If [(%) = 0, then 1 is the identity. The assertions Al - A6 are obviously
satisfied and the induction starts.

Let % € W and let f be a reduced representation ending with e € I. We
may write f as f’e. We put @' = @r,. The word f’ is a reduced representation
of 1'. Now [(1#') = {(10) — 1 and we can apply the induction hypothesis to %'
We have l~('u.1'r5) = l~('u"1') + 1, so the assertion A5 of the induction hypothesis
implies that € C I*(10'). From lemma 2.4 it is seen that I(w're) = I(@') +(re).
Now one uses lemma 2.8 to see that ¢ C I~(1). Since the representation f’
of ' is reduced it must be compatible by the assertion Al of the induction
hypothesis. Combining this with the equality I(®) = I(@'re) = (W) + I(re)
we obtain that f is a compatible representation of .

(I) We have shown that every reduced representation of 1 is compatible.
Moreover, if o € I we have the implication

[(brg) = i(®) — 1 = a C I"(d).

Now let § € I. First observe that Peusy(w) = P(EU.;)('w ); we denote this
element in W by 4. The induction hypothesis shows that ¥ € W and l('w') =
[(3)+1(3~1%'). Since I(#%) = I(@')+1 and I(5™10) = [(3~0'r,) < (5~ 20')+1
1t follows:

(@) < I(®) + i(5~ ) < i(®) +IE ) +1 = (@) + 1 = (@)

-1

and equality must hold. Since 5%’ € (r,7s) it follows that 71 = v~ 1@'re €

(7‘5,7‘6).
Since 97" € (re,rs) it follows that € and & are admissible at v~14b.
Lemma 2.6 provides now the admissibility of € and § at w.
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(IX) This proves A3. Moreover, we have shown A2 for all pairs (o, 8) € I x I
having the property that there is a reduced representation of % ending with
aor f3.

Now let p € I be such that g C I~(). We put z = Pleuy)- Since we have
already shown that ¢ C I~ (w), it follows e U p C I~(%). From lemma 2.8
it is seen that M., is spherical and that @ = Zr(y,). Now let f, be a
reduced representation of Z. Since Z # 1 the induction hypothesis shows that
f, is a compatible representation of z. On the other hand our first remark
above shows that §(e, u) is a compatible representation of r(ey,)re = 2719’ of
length e, — 1. Combining these considerations we obtain that f,4(e, p) is a
compatible representation of 1’ of length I() 4+ 7, — 1. By the induction
hypothesis the representation f,g(e, 1) is reduced. We obtain that f p(p,€) is
a reduced representation of W and that I() = I(Z) 4 7n,,. We have also that
Fei(u, €) is a representation of 1r, of length {(2) + igp — 1 = [(0) — 1. This
shows [(ir,) = I(#) — 1.

(III) For a € I we have proved the implication

a C I7(0) = l(iry) = I(w) — 1
which accomplishes A4. Moreover we have also shown that A6 is valid.

Let now ¢ be a compatible representation of ¥ ending with v. So we may
write ¢ as ¢y. Since € is compatible it follows that v C I~(1b). Since we have
already shown A4 we can deduce [(ir,) = I(#) — 1. So we may apply the
induction hypothesis to wr,. Since & is a compatible representation of 1r,
we can use the induction hypothesis to see that ¢ is a reduced representation
of wr.,, hence its length is {(1) — 1. This shows that the representation & of
w has length l~('J)), so C is a reduced representation of .

(IV) The proof of Al is now complete.

Let now a,8 € I. Assume first that o U8 C I*(). Then we have o =
Paup)() = W by lemma 2.4 and the assertions made in A2 are obviously
satisfied. Now assume that a U 8 € I*(&). Since we have already shown A3
we may assume w.l.o.g. that o C I~ (). Now, since we have already shown
A4 we obtain I(wry) = I(10) — 1 and A2 follows by (II).

(V) This accomplishes the proof of A2

Now let o € I be such that i(Wry) = {(16)+1. From A4 applied to 1 it follows
a € I=(w); now it follows from A3 applied to w that o C It().

(VI) For & € I we have shown the implication
[(re) = (@) +1 = o C I*(D).

Let 7 € I be such that 7 C I*(4). By lemma 2.4 we have = Py(). Assume
that [(1ry) # (W) +1. It follows from A4 applied to 1w that {(wr,) = I(w)—1
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is not possible since 7 C I*(1). So we obtain [(ir,) = I(10). Note that we
can now apply Al - A4 also to W; = 0r,.

We have [(1byr,) = () # I(is,) — 1. Applying A4 to 1; we obtain
7 € I~(4); applying now A3 to 1w, yields # C I*(1;). Lemma 2.4 provides
Wy = Py(i).

Observe that R,(w;) = R,(%) and therefore Py(1;) = Px(10). Combin-

ing all these considerations we obtain

Wty = By = Py(thy) = Pe(th) = @
which is a contradiction. It follows that I(1r,) = () + 1.
(VII) For a € I we have shown the implication

a C I*(®) = i(ra) = I(@) + 1.

This completes the proof of A5 and we are done. ]
Proof of Theorem 1.1: It is obvious that (W, R) is a system of involutions
of type M. Since I is an admissible partition of I with respect to M it follows
from lemma 3.2 that {«, 8} is an admissible partition of U with respect to
Maug) for each pair (a,f8) € I x I. So we can apply Proposition 3.5. Axiom
A of our characterization of Coxeter systems follows now from A3, A4 and
A5 of Proposition 3.5. The assertion A6 provides the validity of axiom B.

Proof of Theorem 1.2: The implication (1) = (2) is provided by lemma
3.2. The assertion A3 of Proposition 3.5 shows the other implication.

4. Automorphisms of diagrams

Let I be a set and let M be a Coxeter diagram over I. Let (W, S) be a Coxeter
system of type M and let [ denote the length function. Let I' be a group of
automorphisms of M and let I be the decomposition of I into the orbits of I'.
Let J C T be the set of all o such that M, is spherical and put J = Uges B-
We define R = {rg|6 € J}.

Let ¢ € T, then g induces a bijection s; — s;s, which extends uniquely to
an automorphism of W . Observe that we have l(w) = l(w?) for all w € W.
We put W = {w € W|w? = w for all g € T'}.

Proof of Theorem 1.3: Let 8 € J. Then T fixes the subgroup Wpg. Since T
preserves the length, it must leave rg invariant (cf. lemma 2.7). This shows
(R)CW.

Let now w € W, € I*(i) and g € T. It follows that I(d) + 1 = I(abs;) =
I((ws;)?) = {(w9s?) = {(Wsis) showing that i9 € I*(1). Similarly one deduces
that 1 € I~ (w) implies 29 € I~(w) for all g € T'. This shows that « is
admissible at 1 for all a € I.

Using the fact that I is admissible at each W € W and lemma 2.8 one shows
by induction on /() that @ € (R). This completes the proof of theorem 1.3.
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Examples and Applications

Examples: In the following we adopt the notation of [5] for the Coxeter
diagrams.

1.

2.

The polarity of A,, (resp. Dy, Eg, F,) provides an admissible partition;
the resulting diagram M is Cins1/2) (resp. Cn_y, Fu, G3(8)).

The triality of D4 (resp. E‘G) provides an admissible partition; the re-
sulting diagram is G, (resp. G,).

. Consider the diagram A,, over the set I = {1,2,...,n} with the natural

labelling. Let w (resp. €) denote the set of odd (resp. even) numbers.
Then {w,€} is an admissible partition. The resulting diagram M is
Gz(n + 1)

We refer to remark 4 of (6], where this example is mentioned in a dif-
ferent context. The proof of the admissibility of the partition described
above will be given in [3].

. The partition {a, 8,7, §, €} with a = {a;, a2}, 8 = {b1, b2}, 7 = {c1, 2},

6= {d,;,d,} and € = {e1,e;} of the following diagram is admissible:

é],z bz r\Cz dz (;32
o/: : : O

ay bl C1 dL €1

The resulting diagram M is the following:

5
o—-O0——O——0—0

a B v 6 €
This is seen from Theorem 1.2 and our third example.
The consideration of the corresponding residues in this example pro-
vides the well known embeddings (see for instance [6]) of H3 (resp. H,)
in D¢ (resp. Es).

Application 1: Example 4 may be seen as a special case of the following
result.

Theorem 5.1 Let I be a set and let M be a Coxeter diagram over I such
that [{fagl(c, B) € Ix I}| < oo. Then there exists a set I, a Coxeter diagram
M over I having only single bonds and an admissible partition {I,|a € I} of
I with respect to M with the property that fag = |{r1,71,)|.

In particular, every Coxeter group which belongs to a diagram satisfying

the above finiteness condition is contained in a Coxeter group which belongs
to a diagram having only single bonds.

This theorem will be proved in [3]. As in example 4 its proof uses theorem 1.2
and the admissible partitions of example 3.
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Application 2: If M is a diagram over I and I is a admissible partition,
providing the diagram M, then it is easy to see that M is spherical if and
only if M is spherical. Our results can be used to give another proof for the
classification of the spherical diagrams. For instance the following is an easy
consequence of our considerations: A; is spherical iff C, is spherical iff B,
is spherical iff Dy is spherical iff G, is spherical iff K¢ is spherical iff Fy is
spherical iff E; is spherical.

Using the theorem of application 1 above we can reduce the classification of
the spherical diagrams to the classification of the spherical diagrams having
only single bonds.

As shown in (7] it is easy to see that for instance Aj is not spherical by using
only the solution of the word problem, whereas it seems to be very hard to
do the same for the diagram E;. Our results can be used to give a proof of

the classification, which does not make use of the associated bilinear forms.
This will be elaborated in [4].
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A local characterization of the graphs
of alternating forms

A. Munemasa * S. V. Shpectorov !

Abstract
Let A be the line graph of PG(n — 1,4q), ¢ > 2, Alt(n, q) be the graph
of the n-dimensional alternating forms over GF(q), n > 4. It is shown
that every connected locally A graph, such that the number of common
neighbours of any pair of vertices at distance two is the same as in
Alt(n,q), is covered by Alt(n,q).

1. Introduction

There have been extensive studies in local characterization of graphs. Cer-
tain strongly regular graphs are characterized by their local structure. In this
paper we shall investigate graphs which are locally a (¢ — 1)-clique extension
of the Grassmann graph [%] over GF(q), ¢ > 2. The Grassmann graph [}]
has as vertices all 2-spaces of an n-dimensional vector space V over GF(q).
Two vertices are adjacent whenever they intersect nontrivially. The alternat-
ing forms graph Alt(n, q) is locally a (¢ — 1)-clique extension of [} ]. In this
paper, we restrict ourselves to the case yp = ¢%(¢*> + 1), i.e., the number of
common neighbours of two vertices at distance 2 is always q%(¢® + 1). Under
the assumption u = ¢2(g* + 1), Alt(4, q) is the only graph which is locally a
(g—1)-clique extension of [} ] with n = 4. This result follows from the classifi-
cation of affine polar spaces due to Cohen and Shult [2]. For large n, however,
we cannot expect such a result, since the quotient graphs of Alt(n,q) over
many subgroups of translations have the same local structure and the same
value of u. The purpose of this paper is to show that Alt(n, q) is universal in
the following sense.

Main Theorem. Let I be a graph which is locally a (¢ — 1)-clique extension
of the Grassmann graph [‘2’], where V' is an n-dimensional vector space over
GF(q), ¢ > 2. Suppose that u(T') = q*(¢>+1). Then T is covered by Alt(n, q).

. This research was completed during this author’s visit at the Institute for System
Analysis, Moscow, as a Heizaemon Honda fellow of the Japan Association for Mathematical
Sciences.

t. A part of this research was completed during the visit at University of Technology,
Eindhoven.
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From this theorem we immediately obtain:
Corollary. IfT is a distance-regular graph having the same intersection num-

bers and the same local structure as Alt(n,q), ¢ > 2, then I is isomorphic to
Alt(n, q).

2. Preliminaries

For a vertex v of a graph T', denote by I';(v) the set of vertices at distance ¢
from v, and denote by v' the set {v} U T (v). Denote by I'(u,v,w,...) the
intersection of the sets I'y(u), ' (v), T1(w),.. ., where u,v,w,... are vertices
of T, hence we denote I'y(u) = I'(u).

A graph T’ is said to be locally A, where A is a graph, if for each vertex
of T the induced subgraph on I'(y) is isomorphic to A. A u-graph for vertices
u,v is the set I'(u, v) where u, v are vertices at distance 2. We also often regard
a p-graph as an induced subgraph. If all u-graphs have the same cardinality,
then we denote this cardinality by u(T'). The following lemma can be found
in [4].

Lemma 2.1 Let ', A be graphs, and suppose that ' is locally A. Suppose
also that A has diameter 2 and any p-graph of A is isomorphic to a graph
M. Then any p-graph of T is locally M.

Two graphs T, T are said to have the same local structure, if for any vertex v
of ' and any vertex ¥ of T', the subgraphs I'(v), (%) are isomorphic.

The Grassmann graph has as vertices the set of d-dimensional subspaces
of an n-dimensional vector space V over a finite field. Two vertices a, 3 are
adjacent whenever dim(aN ) = d— 1. By abuse of notation we denote by [%]
both the Grassmann graph and the set of vertices of the Grassmann graph.
The n x m grid has as vertices {(z,7)[i=1,...,n,  =1,...,m}, two distinct
vertices (21, J1), (22, 72) are adjacent if and only if 7, = %3 or 73 = Ja.

The m-clique extension of a graph A is a graph obtained by replacing
vertices of A by m-cliques, and joining all pairs of vertices from two m-cliques
whenever the corresponding vertices of A are adjacent. If A is the m-clique
extension of a graph A, then an m-clique of A obtained by replacing a vertex
of A is called a basic clique. This definition makes sense if the automorphism
group of A leaves the set of basic cliques invariant, and it is the case when
A is a noncomplete grid or a noncomplete Grassmann graph. A canonical
mapping is a mapping from the set of vertices of A to the set of vertices of
A such that a basic clique is mapped to a single vertex, and adjacent basic
cliques are mapped to adjacent vertices.

The alternating forms graph Alt(n,gq) has as vertices all alternating
forms on a vector space V of dimension n over GF(q). Two vertices -, § are
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adjacent whenever rank(y — &) = 2. The graph Alt(n,q) is locally A9,
where A(™9) is the (g — 1)-clique extension of the Grassmann graph [}].

A small clique of the Grassmann graph [Y] is a clique of the form
(%], where W € [%], while a grand clique of [%] is a clique of the form
{U € [V}|U 3 2}, where 0 # = € V. Both small cliques and grand cliques are
maximal cliques of the Grassmann graph, and any maximal clique is either
grand or small. Any maximal clique of A2 is the preimage of a maximal
clique of [¥] under a canonical mapping. We call a maximal clique of A2
small (resp. grand) if it is the preimage of a small (resp. grand) clique of [}].
A small clique of A™9) has size ¢3—1, a grand clique of A{™® has size g"~'—1.
The intersection of two distinct grand cliques has size ¢ — 1, the intersection
of two distinct small cliques has size at most ¢ — 1, while the intersection of
a small clique and a grand clique has size at most g% — 1.

Lemma 2.2 Let T be locally A9, let u,v,w be vertices of I' with u,w €
T(v). If ['(u,v,w) contains a g*-clique, then u and w are adjacent.

Proof. Let C be a g?-clique contained in I'(u, v, w), and fix z € C. Consider
the graph I'(z) 2 A(™9). Suppose that {v} U C — {z} is contained in a grand
clique of T'(z). Then {u} U C — {z} must be contained in a small clique, say
C1. Also, {w} U C — {z} must be contained in a small clique, say C,, but
|C1NCa| > |C — {z}| > ¢g— 1 forces C; = C,. Thus u and w are adjacent. If
{v}U C — {z} is contained in a small clique, then C; and C, must be grand
cliques, again we obtain C;, = C,. o

Lemma 2.3 Let u,v,w be vertices of I' = Alt(n, q) with u,w € T'y(v), w €
['(u). Then I'(u, v, w) contains a g*-clique.

A singular line (or simply, a line) of a graph T' is a set of the form
{u,v}**, where u,v are adjacent vertices. If I" is locally A for some regular
graph A then I is edge-regular, so that the incidence system whose points
are vertices of T', lines are singular lines of I', becomes a gamma space ([1]
1.14.1). We call this gamma space the gamma space associated with the graph
I'. A subset of the form v', where v is a vertex of T, is a subspace of this
gamma space, i.e., any line which is incident with at least two points of v* is
contained in v'. A hyperplane is a proper subspace which meets every line.

3. pu-graphs

In this section we determine u-graphs of a graph I', where T is locally A(™9),
namely, we determine how a p-graph is embedded in the neighbourhood of a
vertex in T'.
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Proposition 3.1 Suppose that a graph T' is locally A™9), v is a vertex of T,
and ¢ : T(v) — [¥] is a canonical mapping. If u € T',(v), then either

(i) there exist a W € [%] and a nondegenerate alternating form y on W
such that o(I'(u,v)) is the set of 2-spaces of W, nonisotropic with respect to
7, or

(ii) there exist a W € [4] and U € [%] such that o(T'(u,v)) is the set of
2-spaces of W which intersect trivially with U.

Moreover, if u(T') = ¢*(q* + 1), then (i) must occur.

Proposition 3.1 is a consequence of [2], Proposition 5.1, after a series of re-
ductions given below.

It is easy to see that a u-graph of A{™9) is isomorphic to M(9), where
M@ is the (g—1)-clique extension of the (g+1) x (g +1) grid. By Lemma 2.1,
a p-graph of T is locally M(®), Thus, we wish to describe subgraphs of A(™a),
which are locally M(2), By the following lemma, it suffices to consider a sub-
graph of the Grassmann graph [ ], which is locally M(9).

Lemma 3.2 IfY is a subgraph of A"™%) and ¥ is locally M9, then ¥ contains
at most one vertex of each basic clique of A(™9),

Proof. Suppose the contrary and let u,v be two vertices of £ belonging to
the same basic clique. Then u € E(v) and u is adjacent to any vertex of X(v)
other that u. This contradicts the fact that (v) is isomorphic to M0, O

Suppose that T is a subgraph of the Grassmann graph [%] and that T
is locally M(9), A p-graph of M9 is isomorphic to K(9), where K9 is the
disjoint union of two copies of the complete graph on g — 1 vertices. Again by
Lemma 2.1, a p-graph of ¥ is locally K(9. Recall that M9 is itself a clique
extension.

Lemma 3.3 Let © be a subgraph of M(9), and suppose that © is locally
K9, Then © contains at most one vertex of each basic clique of M(®, Write
M@ = U;’-IiCj, where C; are disjoint maximal cliques of M(9). Then there
exists an index jp such that |©NC;| = ¢ holds for any j withj =1,2,...,q+1,
Jj # Jo.

Next we reduce the classification of subgraphs of the Grassmann graph
[¥] which are locally M@, to the case dimV = 4.

Lemma 3.4 Let T be a subgraph of the Grassmann graph [ ] and suppose
that ¥ is locally M(9). Then there exists a subspace W € [%] such that
zcl%l
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Proof. Let u,v be two nonadjacent vertices of ©, and W the unique 4-
dimensional subspace of V for which u,v € [%] holds. Clearly, £(u,v) C [ ).
Indeed, more generally, if a vertex z is adjacent to two nonadjacent vertices
in ['7], then z belongs to [%]. We first want to show that T,(v) C [% ).
Write £(v) = U] R; = U] C;, where {R:}{1], {C;}31] are the two families
of disjoint maximal cliques (so that R; N C; is a basic clique of E(v)). By
Lemma 3.3, there exist indices 3o, jo such that |2(u,2) N R:| = g for 1 # 1,
|Z(u,v) N C;| = g for j # jo. Similarly, if u’ € £5(v), then there exist indices
19, Jo such that |E(u’,v) N Ri| = q for 1 # 45, |E(vw/,v) N Cj| = q for j # j5.
Since q > 2, there exist 41,13, J1, j2 such that i; # 15, j; # j2, and

IE(‘U,,‘U) n R"xl = |2(u)v) N thl =4q,
|Z(u,v)NCj,| = |E(u,v) N Cy| = q,
|2(u’)v) N R;, | = |2(u,,v) n R‘:l =4q,
|2(ultv) n ijl = |E(u,)v) n Chl =q.

Let B;; denote the basic clique R; N C;. Without loss of generality, we may
assume

|2(u’7v) n Bt'u'xl = IZ(‘U,,‘U) n Bt':j:l =1,
Therefore, B, j,, Bi,s C [%], and then By, Bi,;, C ['7 |- Now

129
|2(u,)v) n Bt'u'xl = |E(u',v) n Bt':izl =1,

or

|E(ulyv) N Bt'szl = |2(u’)v) N Bt':jxl =1

In either case u’ € ['} ]. Therefore, we have proved Z3(v) C [% |, and it follows
immediately that £(v) C [%]. Now it is easy to prove by induction that
Ti(w) C [T foralli=1,2,.... O

Remark

Lemma 3.4 is not valid when ¢ = 2. A locally 3 x 3 grid subgraph of the
Grassmann graph [%] over GF(2) may not be contained in a 4-dimensional
subspace. The Johnson graph J(6,3) is one of the two locally 3 x 3 grid
graphs, and the classification of the embedding of J(6,3) into the Grassmann
graph [V] over GF(2) is given in [3]. There are two inequivalent embeddings,
of dimension 4 and 5. The 5-dimensional embedding occurs as a p-graph of
the graph of the quadratic forms over GF(2).

Now the determination of u-graphs of I' has reduced to the classification
of the locally M@ subgraph in the 4-dimensional Grassmann graph. Let W
be a 4-dimensional vector space over GF(g), £ the set of pencils (z, ), where
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z € [¥], 7 € [%], = C 7. The incidence system ([* |, L), where incidence
of U € [%] with the pencil (z,7) is given by £ C U C , is called the
Grassmannian. Its collinearity graph is the Grassmann graph [ .

Lemma 3.5 If ¥ is a subgraph of the Grassmann graph [% ], and if T is
locally M9, then [} | — T is a hyperplane of the Grassmannian (['} ], £).

Proof. Suppose that  is a pencil not contained in [% | — £, i.e., there exists
a vertex v € ¥ incident with I. Let A be the subgraph of [* | induced by
the neighbours of v. Then A is a g-clique extension of the (g + 1) x (g + 1)
grid. Since ¥ is locally M (9, £(v) is embedded in A in such a way that each
basic clique of £(v) is contained in a basic clique of A. Since the set of points
incident with ! is the union of {v} and a basic clique of A, there exists a
unique point on ! not in . In other words, [ meets [* | — £ at a unique point,
proving the assertion. O

The hyperplanes in the Grassmannian (['% |, £) were determined (among
others) in [2]. Particularly, Proposition 3.1 follows now from [2], Proposition
5.1.

4. Subgraphs isomorphic to Alt(4,q)

In this section, we construct subgraphs isomorphic to Alt(4, q) in our graph
T, where T' is assumed to be locally A9 and to satisfy p = ¢*(¢* +1). For
any vertex v of T, fix a canonical mapping g, : I'(v) — [%]. For a subspace

W of V, define S(v, W) by
S, W) = {v}Ur,(W)U{u € Iy(v)|I'(u,v) C 7.(W)},

where 7,(W) = 0;*(['¥]). We want to prove the following proposition.

Proposition 4.1 Let T be locally A9 with u = ¢*(¢>+1), let v be a vertex
of I'. Then the subgraph induced by S(v, W) is isomorphic to Alt(4,q) for
any W € [1].

The proof of Proposition 4.1 will be given at the end of this section.
The graph Alt(4, ¢) has intersection array

{(@® +1)(¢* -1),¢*(¢ - 1)(¢* —1); L, a*(¢* + 1)}
First of all, we compute some parameters of S(v, W).
Lemma 4.2 Let v be a vertex of T', and let W € [%]. For any w € S(v,W)N
['(v), we have

IT(w) N T2(v) N S(v, W)| = ¢*(g — 1).
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In particular,

IC2(v) N S(v, W)l = ¢*(a — 1)(¢* - 1),
15(v, W)| = ¢°.

Proof. Note that if u € I'(v) N Ty(w) N S(v, W), then I'(w,u) C S(v,W)
by Lemma 3.4, since W is the only 4-subspace of V containing both o,(w)
and o,(u). Counting in two ways the number of edges between I'(v) NTz(w)N
S(v, W) and Ty(v) N T'(w) N S(v, W), we obtain

IT(v) N Ta(w) 0 S(v, W)|(w(T) — w(A™9) — 1)
= [T2(v) N T(w) 0 (v, W)|(u(T) — (g — 1)(g +1)* - 1).

Here (q — 1)(g + 1)? appears as the valency of the u-graph of T'. Since
p(A)) = (g — 1)(g + 1)? as well, and |T'(v) N T2(w) N S(v, W)| = ¢*(g — 1)
the desired equality follows. Counting in two ways the number of edges be-
tween I'(v) N S(v, W) and Ty(v) N S(v, W), we obtain |T;(v) N S(v, W)| =
7*(g—1)(¢° - 1). o

Lemma 4.3 Let v be a nondegenerate alternating form on a 4-dimensional
vector space W, and U € ["%]. Then there exist nonisotropic subspaces
Ur,U € (W] such that Uy NU #0, U, NU #0, Uy NU, = 0.

Lemma 4.4 Let v be a vertex of T, and let W € [%]. If v' € S(v, W), then
there exists a subspace W' € [}] such that S(v, W) = S(v', W').

Proof. Since S(v,W) is connected, we may assume without loss of gen-
erality v/ € T'(v) N S(v, W). Let z € I'(v) N T2(v') N S(v, W), and let W’
be the unique 4-dimensional subspace of V satisfying 7,,(W') D I'(v',z).
The graph I'(v,v') N S(v, W) is isomorphic to the join of the g(g — 1)-clique
extension of a (g + 1) x (g + 1) grid and a complete graph on g — 2 ver-
tices. It contains the graph I'(v,v’,z) which is isomorphic to M@, It is easy
to see that the graph I'(v,v’,z) must be embedded into I'(v,v") N S(v, W)
in a natural way, i.e., each basic clique of I'(v,v’,z) is contained in a ba-
sic clique of the g(g — 1)-clique extension of a (g + 1) x (g + 1) grid. For
any vertex u € I'(v,v') N S(v,W), one can find two nonadjacent vertices
v,y' € T(v,v',z,u). Since T'(v,v’,z) C 7,(W'), we see that u € 7,,(W'), i.e,
I'(v,v")NS(v, W) C 7,,(W’). For any vertex u € T'(v')NT2(v)NS(v, W), there
exist by Lemma 4.3 two nonadjacent vertices y,y’ € T'(v,v',u) N S(v, W), so
that u € 7(W'), i.e., T(v') N Ta(v) N S(v, W) C 7,(W'). Thus we have
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I'(v")N S(v, W) C 7(W’), but both sides have the same size by Lemma 4.2,
so D(v') N S(v, W) = 7, (W").

Next suppose that u € S(v, W) is not adjacent to v’. There exist two
nonadjacent vertices y,y’' € I'(v/,u) N S(v, W). This is obvious if u € I'(v),
and follows easily from Lemma 4.3 if u € T2(v).

By Lemma 3.4, this forces I'(u,v’) C 7,,(W') so that S(v, W) C S(v', W').
Now Lemma 4.2 forces the equality. O

Now we are ready to prove Proposition 4.1. By Lemma 4.4, the graph
S(v, W) is locally A9, and u = ¢*(¢%+1). Given a locally A9 graph, one
can construct a rank 4 affine polar space by taking as points the vertices, and
as lines the singular lines. All affine polar spaces of rank > 4 were determined
in [2]. In particular, Alt(4,q) is the only locally A(*9) graph having u =
¢*(g¢% + 1). Thus we obtain S(v, W) = Alt(4, q).

We conclude the section with the following corollary.

Corollary 4.5 Whenever v, up and u; are vertices of T' with uo,u; € I'5(v),
one has T'(v,up) # T'(v,u1).

Proof. By Proposition 4.1, it suffices to check the statement for I' = Alt(4, g),
in which case it is obvious. O

5. Isomorphism of the gamma spaces on
neighbourhoods

Throughout this section, we let T',T' be locally A(™9) with u(T') = w(T) =
¢*(¢® + 1), ¢ > 2. In this section, we shall show that the gamma spaces vt
and 9 are isomorphic for any vertex v of I' and any vertex & of I'. Moreover,
any isomorphism of the gamma spaces 91 — v! can be extended naturally

to a mapping 9 U I'5(8) — vt UT5(v), if one takes I' = Alt(n, g).

Lemma 5.1 If v is a vertex of I' and if W is a 4-dimensional subspace of
V, then S(v,W) is a subspace of the gamma space associated with I'. In
particular, the set of lines of ' contained in S(v, W) is the set of lines of the
gamma space associated with the subgraph induced by S(v, W).

Proof. Let v/, w be two adjacent vertices in S(v, W). We aim to show | =
{v',w}** is contained in S(v,W). By Lemma 4.4, we may assume v' = v.

Then [ = {v} U 7,(U) for some U € [' ], hence [ C S(v, W). O

Lemma 5.2 Ifv is a vertex of I and if U is a 3-dimensional subspace of V,
then {v} U,(U) is a subspace of the gamma space associated with I, and it
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is isomorphic to the incidence system of points and lines of AG(3, q).

Proof. Take a 4-dimensional subspace W containing U. We may consider
{v} U 7, (U) as a subset of S(v, W). By Proposition 4.1 and Lemma 5.1, the
proof reduces to the case I' = Alt(4, q), for which it is straightforward. o

Lemma 5.3 Suppose that M is a maximal clique of the graph Alt(4, ¢) con-
taining 0. If ¢ is a bijection of M onto M with ¢(0) = 0, and ¢ stabilizes
all lines contained in M, then there exists a unique extension of ¢ to an
automorphism of Alt(4, q) stabilizing all lines through 0.

Proof. There is only one class of maximal cliques in Alt(4,g) up to au-
tomorphisms. That is, M has size ¢* and the lines of Alt(4, q) contained in
M define an incidence system isomorphic to AG(3, g). By the assumption ¢
must be the scalar multiplication with regard to this affine space structure,
hence ¢ can be extended to an automorphism of Alt(n, ¢). On the other hand,
the subgroup of Aut Alt(n, q) fixing 0 and all lines through 0 is precisely the
group of scalar multiplications, thus the uniqueness follows. o

With the above lemmas as building blocks, we can construct an isomor-
phism of the gamma spaces v and ¥, where v is a vertex of I and ¥ is a
vertex of I'. Fix a canonical mapping 7 : I'(#) — [%] and set #(W) = 7~ 2(['7 ]),

S5, W) = {8} UF(W) U {w € T2(3)|T(3,w) C #(W)},
where W is a subspace of V.

Proposition 5.4 Ifthe graphs T and T are locally A with p = ¢*(g>+1),
and if v is a vertex of T' and 9 is a vertex of T, then the gamma spaces v
and 91 are isomorphic.

Proof. Fix a sequence of subspaces V =V, D V,_, D --- D V, with
dim V; = j. By Lemma 4.1, we have §(%, V4) & S(v, Va) = Alt(4, q). Moreover,
we can choose an isomorphism between S(#,V4) and S(v, V4) in such a way
that its restriction ¢ to {8}U7(V,) satisfies 0,4 = 7 on 7(V,). By Lemma 5.1,
this mapping ¢ is an isomorphism of the gamma spaces {9} U 7(V4) and
{v} U 7,(V4). We prove by induction on j, that there exists an isomorphism
of gamma spaces ¢ : {t} U7(V;) - {v} U, (V;) satisfying 0,0 = 7 on 7(V}).
Suppose that the assertion holds for some 4 < j < n. We need to define an
extension of ¢ on the basic clique 7(U) for each U € [Y#*] — [%]. Choose
a subspace W € [Vi#*] with U C W. Note that ¢ is already defined on the
subspace {#} U 7#(W N V;) which is isomorphic to AG(3,q). By Lemma 5.3,
¢ can be extended to an isomorphism % of the graphs (and also of gamma
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spaces, by Lemma 5.1) §(%, W) to §(v, W), in such a way that 0,4 = 7 holds
on 7(W). The restriction of ¥ on 7(U) gives the desired extension of ¢. In
order to check well-definedness, choose another 4-dimensional subspace W’
of Vj41 containing U. By connectivity we may assume that dim(W N W’) =
3. Let ¢’ be an isomorphism of the graphs S(%, W') to S(v, W') such that
o,4' = 7 holds on #(W'). The restriction of ¢~19' to {3} UF(W N W') is an
automorphism of {3}UF(WNW') = AG(3, q) stabilizing all lines through {3}
and fixing all points on the line {8} UF(W N W’'N V;). This forces =19’ =1
on {3} UF(W N W'), proving the well-definedness. At the same time we have
proved that our extension of ¢ on {#}UF(Vj;1) maps lines in 7(W) to lines in
7,(W) for any W € [Y3*]. This implies that the extension of ¢ to {5}U7(Vj11)
is an isomorphism of gamma spaces. Therefore, the proof is complete. o

Proposition 5.5 Let v be a vertex I' and Iet © be a vertex of I'. Let ¢ be

an isomorphism of the gamma spaces 91 — vl. Then there exists a bxjectxon

: T5(8) — Ty(v) such that o(T'(%,4)) = (v, ¢a(@)) for any i € T,5(9).
Moreover if T = Alt(n, q), then @, maps edges in I'5(%) to edges in T',(v).

Proof. SinceI;(%)is partitioned into sets of the form I';(5)N5(3, W), where
W e [Y], it suffices to prove the existence of ¢, on each T'3(%) N §(5, W). In
other words, we may assume n = 4 and ' = ' = Alt(4, ¢), and the assertion
is easy to verify in this case.

It remains to show that, if ' = Alt(n, g), then o; maps edges in I';(%) to
edges in T'5(v). If 4 and 1 are adjacent vertices in I'5(%), then by Lemma 2.3,
(@, %,1) contains a g?-clique. Then ['(gy(#), v, p2(1)) contains a g>-clique,
so that @,(%) and (W) are adjacent by Lemma 2.2. »

Lemma 5.6 For any vertex v of I' and any W € [4], S(v, W) = Alt(5,q)
holds. Moreover, the set of lines contained in S(v, W) is precisely the set of
lines of the subgraph S(v, W).

Proof. It is straightforward to check the assertion for I' = Alt(n,gq). Let
I' = Alt(n,q), ¥ a vertex of I'. By Propositions 5.4 and 5.5, there exists a
bijection ¢ from §(3, W) = Alt(5,q) to S(v, W), such that ¢ maps edges
to edges. We want to show that ¢ does not map a non-edge to an edge.
It suffices to check this claim on the subgraph @ = §(#, W) N T5(%). Let
u,w € ) be non-adjacent, but suppose that ¢(u) and ¢(w) are adjacent.
Notice that u and w are at distance 2 in I" and that I'(u, w) C §(%, W). Choose
a vertex z € ['(u,?) N I'y(w). Then L(e(2), p(w)) D o(T(z, w)) U {p(u)},
so that u(T') = |T(¢(z), p(w))| > w(T') + 1. This is a contradiction, since
u(T) = p(T) = ¢*(¢* + 1). Thus we have proved that ¢ is an isomorphism,
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ie., S(v, W) = Alt(5, q).

A line of the subgraph S(v, W) is the intersection of two maximal cliques
of size q*, while a line [ of T is the intersection of two maximal cliques of size
g™ !. A clique of size q* is contained in a unique maximal clique of size g"!
in T, hence a line of S(v, W) coincides with a line of T. O

6. Triangulability

Recall that a path is a sequence of vertices (vo,v1,...,v,) such that v; is
adjacent to vy for 0 < i < s. Here s is the length of the path. A subpath
of the form (u,v,u) is called a return. We do not distinguish paths, which
can be obtained from each other by adding or removing returns. Clearly, this
gives an equivalence relation on the set of paths. Equivalence classes of this
relation are in a natural bijection with paths without returns.

A closed path (a cycle) is a path with vy = v,. For cycles we also do not
specially distinguish the starting vertex, i.e., two cycles obtained from one
another by a cyclic permutation of vertices are considered as equivalent.

Given two cycles v = (vp,v1,...,v, = %) and w = (wo, wy,..., W =
wp) with vy = wp, we may form a cycle v-w = (vo,v1,...,V5, W1, .., W)
Iterating this process and adopting to our concept of equivalence, we say that
a cycle u can be decomposed into a product of cycles vy,..., v, whenever
there are cycles u',v1,...,v;, equivalent to u,v1,...,vs, respectively, such
that w' = v} ... v.

A graph is called triangulable if every cycle in it can be decomposed
into a product of triangles (i.e., cycles of length 3). In this section we prove
the following proposition, which follows immediately from Lemma 6.2 and
Lemma 6.3.

Proposition 6.1 The graph Alt(n,q) is triangulable.

Lemma 6.2 Let [’ be a graph. Assume that for any vertexv of I' and uo,u; €
Tj(v),5 22,
(i) Tj-1(uo) N T'(v) is connected,
(i1) if up and uy are adjacent, then [';_1(uo) N [j1(u1) NT'(v) # 0.
Then T is triangulable.

Proof. Suppose v = (v, v1,...,Ym) is a shortest cycle which cannot be
decomposed into a product of triangles. Then it cannot be decomposed into a
product of cycles of lengths < m, as well. In particular, no pair of its vertices
can be joined in I' by a path shorter than the distance between these vertices
in the cycle. Consider the vertices in v which are at maximal distance from
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v = vp. Then, depending on the parity of m, it is either a single vertex, or
an edge. Now, if m > 4, the conditions (i) and (ii), respectively, lead us to a
decomposition of v, a contradiction. ]

Lemma 6.3 Let ' = Alt(n,q), v,uo,us vertices of I' with ug,u; € T';(v),
j > 2. Then

(i) T'(uo) N T'j_1(v) is connected,

(i1) if uo and u, are adjacent, then T'(uo) N I'(u1) NT;_1(v) # 0.

Proof. This was essentially proved in [1], see the proof of Proposition 9.5.12
for (i), and the proof of Proposition 9.5.13 for (ii). »

7. Proof of the main theorem

The proof of the main theorem depends on a rather general covering theorem.
Let T, T be two graphs having the same local structure. Let v, be vertices of
T, T, respectively. An isomorphism ¢ : %1 — v+ is called extendable if there
is a bijection ¢’ : #1 U [5(8) — vt U T'y(v), mapping edges to edges, such
that ¢’|;. = ¢. In this case we call ¢’ the extension of ¢. We will say that T
has distinct p-graphs if I'(v,uo) = T'(v,u1) for ue,uy € T'y(v) implies up = uy.
Clearly, this property implies that the extension ¢’ above is unique.

Theorem 7.1 Let I',T' be graphs having the same local structure. Assume
that I has distinct p-graphs and also:
(i) There exists a vertex vo of I' and a vertex %% of I', and an extendable

isomorphism ¢ : 5 — v.

(i) if v, are vertices of T', T', respectively, ¢ : - — v! is an extendable

isomorphism, ¢' its extension, and w € T'(%), then ¢'|,» : wl — @(w)! is
extendable.

(iii) T is triangulable.

Then T is covered by T'.

Proof. The proof will be given in a series of steps. First, let v be a vertex
of I' and let ¥ be vertex of T, let ¢ : 9+ — vl be an extendable isomorphism,
and let ¢’ be the extension of ¢. Let w € T'(%), 7 = ¢'|,1 : w' — T(p(w)), 7'
the extension of 7. Then ¢'(u) = 7/(u) for any u € (51 UT3(%))N(w UT,(w)).

Indeed, by definition ¢'(u) = 7'(u) for any u € w'. Let u € (3+ U
T3()) N T'y(w). Since ¢’ maps edges to edges, ¢'(T(w,u)) C T(p'(w), ¢'(u)).
By definition of 7, we obtain 7(I'(w, u)) C T'(¢'(w), ¢'(u)). Since I has distinct
p-graphs by assumption, we obtain 7'(u) = ¢'(u).

In particular, if 7 = ¢'|,+ then ¢ = 7'|;..
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Now let T be the covering tree of ', and let the corresponding covering
be denoted by x. If ¢ is an arbitrary vertex of T, then the vertices of T are
naturally indexed by the paths (without returns) in I' beginning with x(t).
Two vertices of T are adjacent if and only if the corresponding paths are of
the form (wo, ..., wi), (wo,. .., Wi, wit1), where wo = x(1).

We are going to construct a covering : T — I such that for any vertex
tof T,

(a) o¢ s x(2)* LIFTRR A (t)! is an extendable isomorphism,

(b) ¥(r) = oi(x(r)), where r is an arbitrary vertex in T5(t) and o} is
the extension of oy.

Let us pick a vertex to in T. We will define 9 on T = UZ,Ti(¢0) by
induction on 7. Let vy be a vertex of I'. Let o be an extendable isomorphism
x(to)t — vy, o' its extension. Define (to) = vo, ¥(r) = o'(x(r)), for every
r € tg U T(to). Clearly, the conditions (a) and (b) hold for t = t,.

Now suppose that 9 has been defined on T7 = Ui_,Ti(to), j > 2, and
suppose the conditions (a) and (b) hold for t € T%~2. Since T is a tree, for
every t € Tj.1(to) there is exactly one r € Tj_1(to) N To(t). Let us define
B(t) = o (x(2)).

Let us now choose an arbitrary t € Tj_;. Let d € t+ N Tj_5(to). By
induction, ¥(r) = ol(x(r)) for every r € d' U Ty(d). In particular, o, is
extendable by (ii). Now let @ = t+ UTy(t). Clearly, QNT7 = QN (d* UTy(d)).
By the first step, we have ¥(r) = oi(x(r)) = oi(x(r)) for r € QN T If
r € QN T;41(to), then the same conclusion follows by definition. Hence (a)
and (b) hold for ¢, and the covering 9 exists by induction.

Now, at the last step, we are going to prove that ¥(t;) = 9(¢;), whenever
x(t1) = x(t). Let 4 be a cyclein T, t any of its lifting in T', and let v be the
image of ¢ in . In such a case we say that v is an image of . We say that
a cycle in T is good if any of its image is a cycle. Since x(t;) = x(t,) if and
only if any path between these two vertices maps onto a cycle in T, it suffice
to prove that every cyclein I is good.

Clearly, if a cycle is good, then any equivalent cycle is good as well.
Also, a cycle, which can be decomposed into a product of good cycles, is
good itself. Hence, by (iii), we have only to prove that every triangle is good.
Let (to,t1,t2,t3) be a path in T, which maps onto a triangle in I'. By the
preceding step, (to) = o1, (x(to)) = ot (x(ta)) = 9 (ta).

We have shown that 1(¢;) = ¥(22), whenever x(t1) = x(t2). Thus, ¥x™!
is a well defined mapping from I' to ', which is a covering, since both x and
1 are such. This completes the proof. O

We are now ready for the final proof.
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Proof of main theorem

We want to apply Theorem 7.1 with ' = Alt(n,q). First of all, T has distinct
u-graphs by Corollary 4.5. The hypo-thesis (1) is satisfied by Proposition 5.5,
while the hypothesis (iii) by Proposition 6.1. It remains to verify (ii). Let v,
be vertices of I', T, o : 5+ L an extendable isomorphism, ¢’ its extension.
Let w € f‘(f)) In order to show the extendability of ¢'|,,+, it suffices to prove
that o'|,1 is an isomorphism of gamma spaces. Let ! be a line in wt. f w € [,
then, clearly, o’(l) is a line. Suppose w & l. Then there exists a subspace
W € [¥] such that {+} Ul C S(w,W). Since ¢’|,. is an isomorphism of
graphs, ¢'(S(w, W)) = S(o(w), W') for some W' € [¥]. Since o' maps edges
to edges, and S(w, W) = Alt(5,9) = S(o(w), W') by Lemma 5.6, it follows
that ‘T'IS(w,W) is an isomorphism of graphs. Also from Lemma 5.6, [ is a line
of the graph S(w, W), so that 6(!) is a line of the graph S(o(w), W'), and
hence (1) is a line of T again by Lemma 5.6. Therefore, we have shown that
0'|,1 maps lines to lines, so ¢'|,. is extendable by Proposition 5.5. Now all
hypotheses of Theorem 7.1 are satisfied, so that I' is covered by Alt(n,q). O

v
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A local characterization of the graphs
of alternating forms and the graphs of
quadratic forms over GF(2)

A. Munemasa * D.V. Pasechnik !
S.V. Shpectorov }

Abstract

Let A be the line graph of PG(n—1,2), Alt(n,2) be the graph of the n-
dimensional alternating forms over GF(2),n > 4. Let T be a connected
locally A graph such that

1. the number of common neighbours of any pair of vertices at distance two is
the same as in Alt(n,2).

2. the valency of the subgraph induced on the second neighbourhood of any
vertex is the same as in Alt(n,2).
It is shown that T is covered either by Alt(n,2) or by the graph of
(n—1)-dimensional GF(2)-quadratic forms Quad(n—1,2).

1. Introduction

In this paper we investigate graphs which are locally the same as the graph
Alt(n, 2) of alternating forms on an n-dimensional vector space V over GF(2).
An analogous question for GF(g), ¢ > 2, is considered in [4]. The local graph
of Alt(n,2) is isomorphic to the Grassmann graph [} ], i.e. the line graph of
PG(n—1,2). Thus, we investigate graphs which are locally [%]. It turns out
that, besides Alt(n,2), there is another well-known graph which is locally [} ].
It is the graph Quad(n—1,2) of quadratic forms on an (n—1)-dimensional
vector space over GF(2). Both Alt(n,2) and Quad(n—1, 2) are distance regular
and have the same parameters, though they are non-isomorphic if n > 5.
Consider a half dual polar space of type D, over GF(2). Then the
collinearity graph, induced by the complement of a geometric hyperplane,
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for System Analysis, Moscow.
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is always locally [‘;] The number of such hyperplanes, even taken up to
the action of the automorphism group of the polar space, increases at least
exponentially with 7, so that in general, classification of locally [}] graphs
seems to be a hard problem. In this paper, we restrict ourselves to the case
u = 20, i.e., the number of common neighbours of two vertices at distance 2
is always 20. Both graphs Alt(n,2) and Quad(n—1,2) possess this property,
as well as another property a; = 152" — 105, which means that the graph
induced by the second neighbourhood of every vertex is regular of the shown
valency. This latter condition is rather technical and it is used only once in
the proof. Hopefully, in further research it may be shown superfluous.

Under the assumption p = 20, Alt(4,2) is the only graph which is
locally [}] with n = 4, while Alt(5,2) and Quad(4,2) are the only graphs
which are locally [%] with n = 5. For large n, however, we cannot expect the
analogous result, since the quotient graphs of Alt(n,2) or Quad(n—1,2) by
many subgroups of translations have the same local structure and the same
values of p and a,. The purpose of this paper is to show that Alt(n,2) and
Quad(n—1,2) are universal in the following sense.

Main Theorem. Let ' be a connected graph which s locally the Grassmann
graph (%], where V is a vector space of dimension n over GF(2). Suppose that
p(T) =20 and a3(T') = 15- 271 — 105. Then [ is covered by either Alt(n,2)
or Quad(n—1,2).

The following corollary was a motivation for this work.

Corollary. IfT' is a distance-regular graph having the same intersection num-
bers and the same local structure as Alt(n,2), then T' is isomorphic to either
Alt(n,2) or Quad(n—1,2).

As a non-logical consequence of these investigations, new automor-
phisms of Quad(n,q), g even, were found, mixing forms of the same rank,
but with different Witt indices [3].

The contents of the paper is as follows. In Section 2 we collect definitions
and state the notation. In Section 3 we check that the graph Quad(n,2) has
the prescribed local structure and that it is triangulable, that is, every cyclein
it can be decomposed into a product of 3-cycles. Similar results for Alt(n,2)
have been known earlier. In Section 4 we determine the possibilities for the
p-graphs, their intersections, vertex-subgraph relationship, etc. This allows
us to determine in Section 5 the second neighbourhood of a vertex. Finally,
in Section 6 we apply the covering theorem from [4] to show that every graph
under consideration is covered either by Alt(n,2) or by Quad(n—1,2).
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2. Preliminaries

Let T, T' be connected graphs. We say that T is a cover of T if there exists
a mapping ¢ from T to T' which maps edges to edges and, for every v € T,
induces a bijection from I'(y) to T'(¢(7)). If the subgraph I;(a) is regular
for any vertex a of a graph T', and its valency is independent on e, then this
valency is denoted by a; = a,(T').

Let V be an n-dimensional vector space over GF(2), [1;] the Grassmann
graph. A grand clique of [}] is a set of the form {y € [%]|z € v} where
0 # z € V. A small clique of [}] is a set of the form [%¥], where W € [}].
Any maximal clique of [%] is either grand or small. Two distinct grand cliques
have exactly one vertex in common, and two distinct small cliques have at
most one vertex in common. A grand clique and a small clique can have at
most 3 common vertices. Thus, any 4-clique in [} ] is contained in a unique
maximal clique.

Let V be an n-dimensional vector space over GF(q). The rank of an
alternating form  on V is defined by ranky = dim(V/Rad v), where Rady =
{u € V|y(u,v) = 0 for any v € V}. Note that rank~y is always even. The
alternating forms graph Alt(n,q) has as vertices the alternating forms on V.
Two alternating forms v, § are adjacent whenever rank (y — §) = 2.

Let V be as before. A map v : V —GF(q) is called a quadratic form if
for any u,v € V and a,b €GF(q), v(au + bv) = a?y(u) + b*y(v) + abB,(u,v)
for some bilinear form B,. We call B, the bilinear form associated with
v. In case ¢ is even, B, is an alternating form. The rank of v is defined
by ranky = dim(V/Radv), where Rady = {u € Rad B,|y(u) = 0}. If ¢
is even and ranky = dimV odd, then the 1-dimensional space Rad B, is
called the nucleus of y. The quadratic forms graph Quad(n, ¢) has as vertices
the quadratic forms on V. Two quadratic forms %, § are adjacent whenever
rank (y — §) = 1 or 2. The graph Quad(n, q) is distance-regular and has the
same parameters as Alt(n + 1,q) [1].

3. Some properties of Quad(n-1,2)

It is well-known that Alt(n,2) is locally the Grassmann graph [%], where V
is an n-dimensional vector space over GF(2).

Proposition 3.1 The graph I' = Quad(n—1,2) is locally the Grassmann
graph (4], where V is a vector space of dimension n over GF(2).

Proof. Let V = W @ (eo), where T' is the set of all quadratic forms on
W. Define the mapping ¢ : T(0) — [.Y,] as follows. For 4 € T'(0), define
o(7) = Rady € [%,] c [V,] if ranky = 1. If ranky = 2, then write
W = Rady & (z1,z2). Define ¢(y) by ¢(y) = Rady @ (eo + (1 + v(z2))z1 +
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(1 +y(z1))z2) € [,V,]. It is easy to see that ¢ is well-defined and bijective.
Since I'(0) and [,V,] have the same valency, ¢ is an isomorphism if and only
if it preserves adjacency.

Let v, 6§ € T(0) be adjacent. If rank v = rank § = 1, then clearly ¢(v) is
adjacent to ¢(8). If ranky = 1 and rank § = 2, then we have rank (y + §) = 2
and Rad § C Rad «. Thus Rad § C ¢(v)Ne(6), i.e., p(7) is adjacent to ¢(6). If
ranky = rank § = 2 and rank (y+8) = 1, then Rady = Rad § C o(7) N¢(6),
i.e., p(v)is adjacent to ¢(8). Finally suppose that rank y = rank § = rank (y+
8) = 2. Then dim(Rady N Rad §) = n — 4. Choose z,y,2z € W in such a way
that W = (Rady N Rad é) @ (z,y,z), Rady = (Rady N Rad §) & (y), and
Rad § = (RadyNRad §) @ (z). Then Rad (y+ §) = (RadyNRad §) D (y + 2).
Since ¥(y) = 8(2) = (v + 8)(y + 2) = 0, we have v(2) = §(y), so that the
element eo + (1 +(z))z + (1 + 8(z))y + (1 + 4(z))z belongs to p(y) N <p(5)
Thus, dim ¢(y) Np(8) < n —3, i.e., ¢(7) is adjacent to ¢(8).

A graph is called tnangu]ab]e if every cycle in it can be decomposed
into a product of 3-cycles (cf. [4]).

Proposition 3.2 If q is a power of 2, then the graph Quad(n, q) is triangu-
lable.

To prove triangulability of a graph I' it suffices to check the following
two conditions (v a fixed vertex of T'):

(T1) T-1(8) NT(y) is connected for every § € T';(v), 7 > 2;

(T2) if 60,61 € T(v),7 > 2 are adjacent, then the subsets T';_;(80)NT(y)
and T'j_1(61) NT'(y) are at distance at most 1 from each other.

For a proof of this criterion see the proof of Lemma 6.2 in [4]. From now
on we denote by V an n-dimensional vector space over GF(g), q even. Let
I' = Quad(n, q),T = Alt(n,q) and let ¢ be the mapping from I to ' defined
by 4 — B,. Clearly, ¢ takes adjacent vertices to adjacent or equal. Moreover,
two quadratic forms are mapped to the same vertex of Alt(n, q) if and only
if their difference has rank 1, i.e., such forms are adjacent.

The following technical facts were taken from (1], see 9.5.5(i) for (i),
and 9.6.2 for (ii). A proof for (iii) can be found in [1], page 292.

Lemma 3.3 (i) Let v and é be two alternating forms on V. If rank (y+ 6) =
ranky + rank §, then Rady + Rad § = V and Rady N Rad § = Rad (v + §).
(ii) Let v and é be quadratic forms on V' of rank 25 + 1 and 2, respec-
tively. If rank (v + §) = 2j then Rad§ N Rad B, = Rad .
(iii) Let v be a rank 2 quadratic form and § a rank 2 alternating form
on V, such that rank (By + ) = 2. Then there is a rank 2 quadratic form §'
with Bs = §, such that vy + &' also has rank 2.

306



MUNEMASA ET AL: LOCAL CHARACTERIZATION OF FORMS

Lemma 3.4 Let v be a quadratic form on V of even rank 2j. Then ¢ es-
tablishes an isomorphism between the subgraphs I'(0) N T'j_1(v) and Toyn
T';_1(By). In particular, T(0) N T';_;(7y) is connected.

Proof. Clearly, ¢ maps the former set to the latter. Hence, it suffices to
prove that every alternating form from [(0) N T;_;(B,) has exactly one
preimage in ['(0) N I';_;(v), and the preimage of an edge is an edge. Let
B € T(0) N T;_1(B,). By Lemma 3.3(i), Rad 8 O Rad B,. Hence, we may as-
sume for simplicity that Rad~y = 0. Let us consider V' as a symplectic space
with respect to the form B,. Then U = Rad (B, + 8) is orthogonal to Rad 3,
hence by Lemma 3.3(i), U = Rad 8. Let a quadratic form § be defined by
Rad$§ = Radf and 8|y = v|v. Then Bs = B and Rad(y + §) = U, hence
~ + 6 has rank 27 — 2. On the other hand, if for a quadratic form § one has
Bs =  and v + § has rank 27 — 2 then Rad(y + §) = Rad(B, + 8) = U,
and hence § must be defined as above. Hence, ¢ is indeed a bijection between
L(0) N T;-1(7) and T(0) N T;_1(B,).

Now suppose that &;, 6, are two rank 2 quadratic forms, such that both
61 =+ 61 and & = v + §; have rank 2j — 2. Let U; = Rad(By), i = 1,2.
Suppose Bjs, + B, has rank 2. By Lemma 3.3(i), it means that Z = Rad Bs, N
Rad Bjs, has codimension at most 3 in V. In particular, U; and U,, which are
both orthogonal to Z, generate at most a 3-dimensional subspace. It follows
that T = U; NU, is nontrivial. Now the equality v = &; + ] = 6, + 6, implies
b1+ b2 = 8] + 8,. Therefore, both Z and T are in the radical of é; + é2. Since
Z has codimension at most 3, and T ¢ Z, we finally have that §, + &, has
rank at most 2. m}

Now let us consider the case ranky = 2§ — 1. Let, as in [1], R,(y)
denotes the set of quadratic forms §, such that y + § has rank s. Then I'(0)N
T';_1(7y) consists of three parts, namely, Q1(y) = R1(0) N Raj-a(7y), Qa(y) =
Ry(0) N Ryj—3(7) and Q3(y) = R2(0) N Ryj—2(y). Clearly, Qi(y) is a clique.
Furthermore, Q,(y) consists of all rank 2 forms in the preimage of I'(0) N
T,_2(B,). In particular, Q,(7) induces a connected subgraph.

Lemma 3.5 Ifranky = 25 —1 then T(0)NT';_;(7) is a connected subgraph.

Proof. Let § € Q3(y). By Lemma 3.3(ii) Rad ¥ = Rad B, N Rad §. Hence
there is a hyperplane U in V, such that Radé C U and Rady = Rad B,NU.
Define a rank 1 quadratic form a by Rada = U and a|Raqu = '7|RadB.,'
Clearly, a € 1(v) and §, a are connected by an edge. Since Q;(7y) is a clique,
it means that Q,(y) U Q3(7) induces a connected subgraph.

Since Q,() is connected, it remains to find an edge between Q,(7) and
Q3(7). Let 6 be as above and let U = Rad §+ Rad B,. Then U is a hyperplane

307



MUNEMASA ET AL: LOCAL CHARACTERIZATION OF FORMS

in V and, clearly, we can find an alternating form 8 in '(0) N T;_5(B, ), such

that Rad8 C U. Then by Lemma 3.3(iii) there is a rank 2 quadratic form

a with B, = B, such that § + o has rank 2. On the other hand, clearly,

a € Qz(’)’). a
Lemmas 3.4 and 3.5 give (T1). Next we check (T2).

Lemma 3.6 If 4,6 € T;(0) are adjacent, then there is an edge between
I'(0) NTj-1(y) and T(0) N T;_1(8).

Proof. Let B, and B; be of rank 2s and 2k, respectively. We have seen
above that (T'(0) NT';_1(7)) contains T(0)NT,_1(B,) and ¢(T'(0) NT;_1(6))
contains [(0)NT4-1(Bs). If k = s then [4], Lemma 6.3(ii) implies that T'(0) N
f‘,_l(B.Y) N f‘k_l(B5) # f.1f s < k then F(O) N f‘,_l(B-.,) C f‘(O) N f‘k_l(B5),
and, in particular, we obtain the same conclusion as above. Similarly in the
case s > k. Hence in any case @(T'(0) N Tj_1(7)) N ¢(T'(0) N T;-1(8)) # 9.
Since the preimage of any vertex of I is a clique, we obtain the desired edge
between I'(0) N T';_y(7y) and T'(0) N T';_41(6). a

Since both conditions (T1) and (T2) have been checked, the proof of
Proposition 3.2 is complete.

4. p-graphs

We will say that I' has distinct p-graphs if I'(v,uo) = I'(v,u1) for up,u; €
T';(v) implies uo = u;. Assume that the graph T is locally [4], where V is an
n-dimensional vector space over GF(2). Any u-graph of [4] is a 3 x 3 grid,
and (Y] has distinct p-graphs. It follows (see [5], Lemma 1) that any p-graph
of ' is locally a 3 x 3 grid and that I" has distinct u-graphs.

Lemma 4.1 Suppose p = u(T') = 20. Then every pu-graph of I' is isomorphic
to J(6,3), and T' has distinct p-graphs.

Proof. Itis well-known that there are precisely two connected locally a 3x 3
grid graphs, as a reference we can suggest [2], where these graphs appear as
a very special case. The Johnson graph J(6,3) is the only locally a 3 x 3 grid
graph with 20 vertices. o

Now we are going to determine all embeddings of J(6,3) into the Grass-
mann graph [¥]. We denote by A(W) the set of all nondegenerate alternating
forms on W, where W is a 4-dimensional vector space over GF(2). We also
denote by Q(W, z) the set of all nondegenerate quadratic forms on W with
nucleus (z), where W is a 5-dimensional vector space over GF(2),0# z € W.
For v € A(W), we define

M, = {U € [%]|U is nonisotropic with respect to v}.
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Then |M,| = 20.
For v € Q(W, z), we define

M, {U € [W]lv(u) =1 for all u € U,u # 0}.
T, = {Ue[W)lz¢U, vluv #0, v is linear on U}.
TS = {Ue[%lly=00nU}.

Then |M,| = 20, |T,| = 45, |Ty| = 15.

The subgraph of [% ] induced by M, where v € A(W), or Q(W,z), is
isomorphic to J(6,3). We aim to show that these two are the only subgraphs
of [¥] isomorphic to J(6,3) up to automorphisms of [% .

For a finite set Q, consider the incidence system Q33 = ((7), (7)), where
(%) denotes the set of i-subsets of Q, and the incidence is defined by inclusion.
A representation ¢ of {3 is an injective mapping ¢ : (3) — V — {0}, where
V is a vector space over GF(2), satisfying the property

o({, 1) + o({5, k}) + ¢({5,7}) = 0

for any {i,7,k} € (3). Since the Johnson graph J(|Q|,3) is the line graph of
(15,3, we obtain an embedding of the Johnson graph into the Grassmann graph
[Z] whenever we have a representation of {2, 3. One can construct the universal
representation of (), 3 in the sense that any linear relation between the vectors
representing pairs from () follows from the above relations. The dimension
of the space generated by the image of () in the universal representation is
the dimension of the left null space of the incidence matrix for 2, 3 taken over
GF(2). If || = 6, then one checks easily that the dimension of the universal
representation is 5.

Lemma 4.2 Let V' be an n-dimensional vector space over GF(2) and M a
subgraph of [%] isomorphic to J(6,3). Then one of the following holds.

(i) There exist W € [%], v € A(W) such that M = M,

(ii) There exist W € (4], 0 # = € W, v € Q(W, z) such that M = M,

Proof. The graph J(6,3) has 30 maximal cliques. It can be shown that
there are 15 maximal cliques, each of which is contained in a grand clique of
[%]. This establishes a representation of ;3 in V. One checks easily that the
embedding (ii) is obtained from the universal representation, while (i) is the
only quotient of it. o

In the rest of this section we list some properties of the subgraphs J(6,3)
of [¥], mostly found by a computer program. In every case a check is straight-
forward. Table 1 is self-explanatory. The Petersen graph is the complement of
J(5,2). By the type of a quadratic form, we mean the rank r together with a
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description of v and é M, N Ms|#of§

1 K, 15

§ € Q(W,z) type of 2+ Ng 45

v € Q(W, ) §# v+ -] 0 15
3 K, 180

44| 3-claw 120

4 0 72

typeof yon |[2— K, 4

) | Rad (Bylw, +8) [75] K, | T3

Rad (B,|w, +8) =0 K, 12

typeof §on (2—| K, 64

_,,fee v?,l(vg[ff] Rad (Bs|lw, +7) [2+] K, 192

v € A(WL) Rad (Bs|w, +79) =0 K, 192
5§ € A(Wy) rank (y+6) =2 Nia 15

§# rank(y+ §) =4 | Petersen 12

S A(Wz) Yiwinw, = 6|W10W2 K, 4

dmWinW, =3 | y|w,aw, # blw,nw, K, 24

Table 1. Intersection of two u-graphs

sign “+” or “—” when r is even. The sign “+” indicates that the Witt index
is 7/2, “—” indicates that it is r/2 — 1.

Let Ny, be the graph with 12 vertices {(3,7): = 1,2, 7 = 1,...,6}
where two distinct vertices (21,71),(32,72) are adjacent if and only if |j; —
ja| = 0,1, or 5. Let Ng be the induced subgraph of Nj; on the vertices

{(Z,J)lZ = 1121 .7 = 1114}

Lemma 4.3 Lety € A(W) with W € [}], ory € Q(W,z) with W € [}]. For
U e (Y], set Nyy = {Us € M,|UNU; # 0} and regard N,y as a subgraph of
M,

() Kye AW),Uce€[%]—M,, and Nyy # 0, then N,y is isomorphic
to either Ny; or Ky. Moreover, Nyuy = Ny, if and only if U € [ ] — M,,.

(ii) vy € Q(W,z),U € [%]—M,, and N,y # 0, then N,y is isomorphic
to either Ny or K4. Moreover, N,y = Ng if and only if U € T,,.

(iii) The number of U € [4] — M, with N,y # 0 is 15. 2! — 105 if
v € A(W) and is 15 - 21 — 120 if y € Q(W, z).

Lemma 4.4 Let y € A(W) or Q(W,z), M, D N = Ng. Then N generates
W, i.e., there is no proper subspace Wy of W for which N C [%}*] holds.
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Lemma 4.5 Let vy € Q(W,z), 6§ € Q(W,y). If M, N Ms = Ng, then z = y.

Lemma 4.6 (i) The graph with vertex set A(W) whose edges are (v,$§),
where M, N M; = Ny, is a connected graph of valency 15.

(ii) The graph with vertex set Q(W,z) whose edges are (v,8), where
M, N Mg 2 N, 1s a connected graph of valency 45.

Lemma 4.7 (i) Let Uy, U, € [%], imW =4, U; N U, = 0. Then
[{y € AW)|U, € M,,, U, € M, }| = 10.
(ii) Let Uy, U € [%), dimW =5, U, @ U, @ (z) = W. Then

{y € QW,2)|U: € My, Uz € M,}| = 10.

Lemma 4.8 Suppose that v,8 € Q(W,z), the type of y + § is 2—. Then

> {a € A(W1)| M. N M, D K4y Mo\ M; 2 Ky} = 24.
er[v;’]. Wiz

5. Determination of the second neighbourhood

In this section, we assume that I is locally [¥] with p = 20, and @, = 15-2"~!—
105, where [}] is the Grassmann graph on a vector space V of dimension n
over GF(2). The assumption on a, is, however, unnecessary before Lemma 5.5.
Let u,v be vertices of T' at distance 2. Then u is said to be of type 1 (resp.
of type 2) with respect to v if the subgraph I'(u,v) in the Grassmann graph
I'(v) satisfies Lemma 4.2(i) (resp. (ii)).

Lemma 5.1 Let u,v be vertices of I at distance 2. Then u is of type 1 with

respect to v if and only if v is of type 1 with respect to u. If u is of type 1
with respect to v, then

[{w € Ta(v) NT'(u)|T(u,v,w) = N2} = 15.
If u is of type 2 with respect to v, then

[{w € T'2(v) N T'(w)|T(u,v,w) = Ng}| = 45.
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Proof. If v is of type 2 with respect to u, then by Lemma 4.3 there exists
a vertex w € I';(v) NT'(u) such that I'(u,v,w) & Ns. By Lemma 4.4, T'(u,v)
and I'(w,v) generate the same subspace in the Grassmann graph I'(v). In
particular, v and w are of the same type with respect to v. According to
Table 1, Ng does not occur as the intersection of two u-graphs of vertices
of type 1. Thus, u and w are of type 2 with respect to v, proving the first
assertion. The rest of the statements follows from Lemma 4.3, a

For the rest of this section, fix an arbitrary vertex vy of I and identify
T(vo) with [%]. By Lemmas 4.2 and 4.1, one can identify I';(vo) with a subset
of (Uw, A(W1))U(Uw, « Q(Wa2,z)) in such a way that U € (%] and « € T3(wo)
are adjacent if and only if U € M,. The goal of this section is to determine
T2(vo) as such a subset.

Lemma 5.2 (i) If AW)NT2(vo) # 0, then A(W) C T'a(vo).
(ii) If Q(W,z) N Ta(wo) # 0, then Q(W,z) C T'a(wo).

PI‘OOf. (l) Let v € A(W) N Pz(’Uo). Then by Lemma 51, we haVe
|{6 € Ta(vo) NT'(7)|Ms N My = Nyp}| = 15.

Lemma 4.4 implies that if Ms N M, = Ny, then § € A(W). By Lemma 4.6(i)
we find A(W) C T3(wo).
(i) The proof is analogous, using Lemmas 4.5, 4.6(ii) and Table 1. O

Lemma 5.3 Forany W € [‘;], one and only one of the following holds.
(i) A(W) C T(wo), i i
(ii) Q(W,z) C T'3(wo) for exactly one W € [V] and exactly onez € W
with W =W @ (z).

Proof. Choose Uy, U, € [*] such that U; NU; = 0. Since |[T(Uy, Uz)Nwgd| =
10 < p(T'), we can find a vertex « in I'z(vo) NT(Uy, Us). If v is of type 1 with
respect to vo, then v € A(W), so that (i) holds by virtue of Lemma 5.2(i). If
4 is of type 2 with respect to v, then y € Q(W, z) for some W € [V], zc ¢ W
with W C W. It follows easily that z ¢ W. By Lemma 5.2(ii), Q(W,z) C
Ty(vo). If (i) and (ii) hold simultaneously (resp. if the pair (W,z) is not
unique), then I'(Uy, Us) contains subsets I'(Uy, Uz) Nvg, T(Uy, U2) N QW, z),
T(Uy, U2)NA(W), (resp. T(Us, Uz )NQ(W', 2') for another pair (W, z')), each
having cardinality 10 by Lemma 4.7. Since the intersections are clearly trivial,
we obtain a contradiction with g = 20. o

Lemma 5.4 Let v,6 € T's(v), M, N Ms # 0. Then v is adjacent to § if and
only if M, N M; contains a 4-clique.
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Proof. By Lemma 4.3(i-ii), if v is adjacent to 8, then M, N My is one of
Nya, Ng, or Ky, all of which contain K. The converse is a special case of [4],
Lemma 2.2. a

Lemma 5.5 If Q(W,z) C T3(vo), Wi € [¥], diim(W NW;) = 3 and = ¢ W,
then A(Wl) ¢ I‘z(’Uo).

Proof. Suppose A(W;) C I'y(vo). Let v € A(W;), and choose § € Q(W, z)
in such a way that M, N ["3"] = M; N ["7*]. Then M, N M; = K4, hence
~ and § are adjacent by Lemma 5.4. It is easy to see that there exists an
Up € M; such that Uy N W, = 0. On the other hand, Lemma 4.3(iii) together
with the assumption on @, implies

Ta(y)NT(wo) = {U €3]~ My|Nypw # 0}
{U € [¥]-M,|UnW, #0}.
This is a contradiction since Uy € T'y(7). o

For brevity, let us call a 4-space W of type A (resp. of type Q) if
Lemma 5.3 (i) (resp. (ii)) holds.

Lemma 5.6 Let Wo, Wy € [%], dim(W, N W;) = 3. Suppose that W is of
type A, and W; is of type Q, ie, Q(W],z) C T'a(vo) with W] = W; @ (z).
Then

(i) = € Wo C W1,

(ii) every W € [Wi] with = € W is of type A.

(iii) every W € [%] with z € W and dim(W N W) = 3, is of type A.

Proof. (i) If Wo ¢ W], then Wo N W] = W, N Wy, which is impossible by
Lemma 5.5. Thus, Wo C W]. If z ¢ W,, then W] = W, @ (z), which would
imply, by Lemma 5.3, that W, is of type Q.

(ii) Since W, is of type A, we may assume W # Wo. If W is of type
Q, then Q(W',y) C T'y(vo) for somey ¢ W, W' = W @ (y). By (i), we have
y € Wo C W'. This implies W' = W/, and by Lemma 53,y =z € W, a
contradiction. Thus, W is of type A.

(iii) If W is of type Q, then Q(W',y) C T'y(vo) for somey g W, W' =
W @ (y). Let Uy,U,, U; be the 4-spaces of W, containing W N W|. Then
Uy, U,;,Us are of type A by (ii), and hence by (i), we have U; C W' for
1 =1,2,3. This forces W' = W], which is a contradiction. o

Let Q(W,l‘) = Q(W,:L‘) U (Uxewle[vr] A(Wl))
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Lemma 5.7 We have either
(i) La(we) = |J AW),

wel§]

(if) w)= U QWz)

W€[‘5’], W3z

or

for some nonzero element z € V.

Proof. Suppose first that every vertex u € T'3(vp) is of type 1 with respect
to vo. Then T'y(vo) is a union of A(W)’s, so the first equality holds.

Next suppose that there is a vertex u € I's(wo) of type 2 with respect to
vo. This means that there exists a W; € [ of type Q. Since |Q(W, )| does not
divide |T'3(vo)| (|T2(wo)| is known since p is known), there exists a W, € [%]
of type A. Since the Grassmann graph [%] is connected, we may assume
without loss of generality that dim(W, N W) = 3. By Lemma 5.6(i), we see
that Q(W{, z) C Tz(vo) for some z € Wo— Wy, W! = W1 @ (z). Let W € [¥],
z € W), dim(W] N W}) = 4. We want to show that Q(W},z) C Ta(vo). In
order to do so, it suffices to prove that Q(W,,z) C I's(w), by virtue of from
Lemma 5.6(ii). Let W, € (%3] with ¢ ¢ Wo N W/ € [%4]. By Lemma 5.5,
W, must be of type Q. Applying Lemma 5.6(i) for (W] N W;, W2), we see
that Q(Wj,y) C T'y(wo) for some y € Wi N W} — Wa. If y # z, then there
exists a W € (%3] such that z € W, y ¢ W. Since W) = W & (y), W is of
type Q, while W is of type A by Lemma 5.6(iii). This contradiction proves
z =y, so that Q(W}, z) C T';(vo). We have shown Q(WY,z) C T'y(vo) for any
W € [¥V] with z € W, dim(W{ N W}) = 4. Now it follows from connectivity
of the Grassmann graph [Y/{*)] that Q(W},z) C Ty(vo) for every W} € [¥]
with z € W}. Finally, a simple counting shows that the sets Q(W,z) cover
the whole of T'3(vs). a

It is straightforward to check that Lemma 5.7(i) holds if I' = Alt(n, 2),
and Lemma 5.7(ii) holds if I' = Quad(n—1,2). Moreover, two vertices v, 8
of Quad(n—1,2) at distance 2 are of type 1 to each other if and only if
rank (y+8) = 3. If T satisfies Lemma 5.7(ii), then the grand clique C = {U €
[¥1IU > z} of the Grassmann graph [5] = I'(v) will be called the nucleus
with respect to vo. If u € T'5(vp), then I'(vo,u) N C = Ky or ) depending on
whether u is of type 1 or 2 with respect to vy, and the nucleus is the only such
grand clique. The following lemma gives a more convenient characterization
of the nucleus.

Lemma 5.8 Let v be a type 2 vertex with respect to vo, and W € [%] be
the subspace generated by M,. Then the nucleus C with respect to wg is
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characterized by the properties [ | N C # 0 and

{UeMJUNU, #0} = K, forany U e [%]NC.

Proof. Note that v can be regarded as a nondegenerate quadratic form on
W, and its nucleus z is characterized by the property: for any U, € [% | with
Us 3 z, Up contains a unique nonsingular 1-space distinct from (z). There are
exactly four elements in M, containing a given nonsingular 1-space. a

6. Proof of the main theorem

Let T' and T' be graphs with the same local structure, let v be a vertex of
T and let 7 be a vertex of I'. An isomorphism o : 9+ — v with (%) = v
is called extendable if there exists a bijection o' : 9+ U T'3(3) — vt U Ty(v),
mapping edges to edges and satisfying o'|;. = o. In this case the mapping o’
is called the extension of o.

Let T be locally [4] with g = 20 and a3 = 15-2""! — 105, where V is a
vector space of dimension n over GF(2).

Lemma 6.1 Suppose vo is a vertex of T', such that Lemma 5.7(i) holds.
Take I' = Alt(n,2) and let & € I'. Then every isomorphism o : 9+ — vt is
extendable.

Proof. Clearly, every p-graph I'(%,4) in %' is mapped onto a u-graph
I'(v,u) in vt. By the second part of Lemma 4.1, such a vertex u is defined
uniquely and, hence, we can define the extension ¢ by ¢'(4) = u. It remains
to check that ¢' maps an edge to an edge. Unless both ends of the edge in
7 UT5(%) belong to I'5(%), the claim follows by definition. Let u € T5(%).
Identifying T'(u) with [¥], it follows from Lemma 4.3(iii) that the set

S = {w € I'(u) — I'(x, 9)|T(u, ,w) D Kq}

has cardinality a; = 15-2"~! — 105. By Lemma 5.4, S is contained in I'(u) N
I;(#), whose cardinality is also a,. This implies S = I'(u)NT2(%). Now if (u, w)
is an edge in f‘z(i}), then f‘(u,i},w) D Ky, so that I'(o'(u),v,0'(w)) D K.
Again by Lemma 5.4, we see that (o'(u), o'(w)) is an edge. o

Lemma 6.2 Suppose vo is a vertex of I', such that Lemma 5.7(ii) holds.
Take T = Quad(n—1,2) and let & € I'. Then an isomorphism o : 5+ — vt is
extendable if and only if it maps the nucleus with respect to v to the nucleus
with respect to v. In particular, if there exist type 2 vertices u € I';(v) and
@ € Ty(d), such that o(T'(3,4)) = I'(v, u), then o is extendable.
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Proof. The “only if” part is obvious, so let us consider an isomorphism
L

o : 91 — vt which maps the nucleus with respect to % to the nucleus with
respect to v. As in Lemma 6.1, the y-graphs in 9* are mapped onto yu-graphs
in v* and this gives us the extension ¢’. We only need to check that o' maps
edges from T'5(%) onto edges.

Letu € f‘z(i}). If u is of type 1 with respect to © then, as in the previous
lemma, we show that for every edge (u,w) in I';(%) we have ['(u,9,w) D K,
and hence (o'(u), o'(w)) is an edge by Lemma 5.4. Suppose u is of type 2 with
respect to 9. Consider once again the set § = {w € I'(u)—T'(u, 3)|T'(u, 3, w) D
K4} C T(w)NT5(%). This time, |S| = a;— 15 by Lemma 4.3 (iii). Identify now
[(%) with (4] and suppose u = vy € Q(W, ) C T'3(%), where 0 £ z € W € [¥].
From Table 1, there are 15 elements § € Q(W, z) such that the type of v+ §
is 2—, and for such a vertex §, M, N M; = Q) holds. By Lemma 4.8, there are
24 vertices in Q(VV, z) which are of type 1 with respect to ¥ and are adjacent
to both v and 6. Since p = 20 < 24, v and § must be adjacent. Therefore,
I'(u) NT5(9) consists of the disjoint union of S and the set

So = {6 € Q(W,z)|type of v + 6 is 2—}.

Clearly, o'(w) is adjacent to o’(u) if w € S. If § € So, then by the first part
of the proof, the 24 type 1 common neighbours of ¥ = u and § in Q(VV, ) are
mapped to common neighbours of ¢'(u) and ¢'(§), so that o'(u) and o'(§) are
adjacent since p < 24.

The last statement of the lemma follows from Lemma 5.8. o

Proof of Main Theorem. First suppose that for any vertices u,v of T at
distance 2, u is of type 1 with respect to v. Let T' = Alt(n,2). Then for any
vertex v of " and for any vertex ¥ of I and for any isomorphism o : o+ — v,
o is extendable by Lemma 6.1. Let ¢’ be the extension of #. The mapping
o' maps edges to edges. Hence, if w € T'(%), then ¢'|,1 is also extendable by
Lemma 6.1. Now, by (4], Proposition 6.1, all the hypotheses of [4], Theorem 7.1
are satisfied, so I is covered by Alt(n, 2).

Next suppose that there exist vertices ug,vo of I' which are of type
2 with respect to each other. Again we want to use [4], Theorem 7.1, this
time with I' = Quad(n—1,2). By Lemma 6.2, there exists an extendable

isomorphism #; — vg, where 4, is a vertex of I'. Suppose that 7 is a vertex

of ' and that v is a vertex of I' and & : #1 — v is an extendable isomorphism
with the extension o’. Then o’ maps edges to edges. Let w € T'(%). We want
to show that o'|,,. is extendable. If u € 5+ UT'3(%), then clearly o'(T'(w,v)) =
T'(¢'(w), o’(u)). If, moreover, u is of type 2 with respect to w, then, as well,
o'(u) is of type 2 with respect to o'(w). By Lemma 6.2, it implies that the
nucleus with respect to w is mapped to the nucleus with respect to o'(w).

Again by Lemma 6.2 we obtain that o', is extendable.
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It remains to find a vertex u € 9+ U T'3(%), which is of type 2 with
respect to w. Since I' = Quad(n—1,2), it means that we must find, for every
quadratic form « of rank < 2, a quadratic form 6 of rank at most 4, such that
rank (7 + ) = 4. This is easy to check, so that ¢'|,. is indeed extendable.
Triangulability of Quad(n—1,2) has been shown in Proposition 3.2. Now all the
hypotheses of [4], Theorem 7.1 are satisfied, so I' is covered by Quad(n—1,2).

a
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On some locally 3-transposition
graphs

D. V. Pasechnik *

Abstract

Let ¢ be the graph defined on the (+)-points of an n-dimensional
GF(3)-space carrying a nondegenerate symmetric bilinear form with
discriminant ¢, points are adjacent iff they are perpendicular. We prove
that if e = 1, » > 6 (resp. ¢ = —1, n > 7) then X%, is the unique
connected locally X graph. One may view this result as a charac-
terization of a class of c* - C;-geometries (or 3-transposition groups).
We briefly discuss an application of the result to a characterization of
Fischer’s sporadic groups.

1. Introduction and results

The study of geometries of classical groups as point-line systems with fixed
local structure is very extensive. For instance, see Tits [12]. We refer the
reader to a paper of Cohen and Shult [4] for a brief survey on more recent
results.

In this paper we use the aforementioned approach to characterize some
“nonclassical” geometries, namely 3-transposition graphs that arise from or-
thogonal GF(3)-groups.

For the concept of a 3-transposition graph and a 3-transposition group,
see Fischer [8]. In case of characteristic 2 groups such graphs come from clas-
sical geometries. It is worthwhile to mention the work of Hall and Shult (9]
characterizing some class of 3-transposition graphs as locally cotriangular
ones. Note that the graphs Xf considered in the present paper are not lo-
cally cotriangular (apart from finitely many exceptions for small n).

There is a one-to-one correspondence between 3-transposition graphs
and Fischer spaces (see, e.g. Buekenhout [2], Cuypers [6], Weiss [13], [14]),
namely 3-transposition graphs are complements to the collinearity graphs
of Fischer spaces. It turns out that it is possible to exploit this duality and
classification of Fischer spaces in the final part of the proof of our theorem 1.1.
Note, however, that locally ¢ graphs not always arise from Fischer spaces.

*. A part of this research was completed when this author held a position at the Institute
for System Analysis, Moscow.
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E.g., there are at least two nonisomorphic locally X7 -graphs, one of them has
diameter 4, (i.e. it does not correspond to any Fischer space) see e.g. [1]. The
author has shown (in a paper in preparation) that they are the only examples
of such graphs.

Throughout the paper we consider undirected graphs without loops
and multiple edges. Given a graph TI', let us denote the set of vertices by
V = VT, the set of edges by E = EI'. Given two graphs I', A, the graph
I' U A (resp. the graph I' N A) is the graph with the vertex set VI' U VA
(resp. V' N VA) and the edge set ET' U EA (resp. ET N EA). Given v € VT,
we denote by I';(v) the subgraph induced by vertices at distance 7 from v,
and I'y(v) = I'(v). Furthermore, I'(X) = N,ex I'(z). To simplify the notation
we use I'(vy,...,vx) instead of I'({vy,...,vx}) and u € Ty(...) instead of
u € VIy(...). As usual, v = o(T') = |VT|, k = k(T') = v(I'(z)), where z € VT
Let y € I'y(z). We denote p = p(z,y) = p(T') = v(I'(z,y)). Of course, we use
k, p if it makes sense, i.e. if those numbers are independent on the particular
choice of the corresponding vertices. If A is a (proper) subgraph of I' we
denote this fact as A C T (resp. A C T).

We denote the complete multipartite graph with the m parts of equal
size n by Knxm. Aut(T') denotes the automorphism group of I'. Qur group-
theoretic notation is as in [5]. Let I', A be two graphs. We say that I is
locally A if T(v) = A for any v € V(T). Let T', T be two graphs. We say
that T is a cover of T if there exists a mapping ¢ from VI to VT which maps
edges to edges. Suppose we have a chain of graphs ¥,...,Z,, such that X;
is locally ¥;_4, 2 = 2,...,n. Then for any complete k-vertex subgraph T of
Em,1 <k <m < nwehave ,(VT) = X,,_x. We say that a graph I' is a
triple graph if for each nonedge (u,v) there exist a unique w € VI such that
I'(u,v) = I'(u,w) = T(v,w).

We slightly adopt notation and several basic facts from [10]. Let T = T,
be an n-dimensional GF(3)-vector space carrying a nondegenerate symmetric
bilinear form (,) with discriminant e. We say that the point (v) C T (or a
nonzero vector v € T') is of type (4), (—) or isotropic according to (v,v) =
1, —1, O respectively. Since the form is constant on a point, the notation like
(p, q) for points p, ¢ will be used freely. The orthogonal complement of X C T
in T is denoted by X*.

Define the graph £¢ = I'(V,E) as follows. Let V be the set of (+)-
points of T'. Define E = {(u,v) C V x V|(u,v) = 0}, i.e. the edges are pairs of
perpendicular (+)-points. Given I' = I, we denote by T(T') the underlying
GF(3)-space. Note that £, n > 6if e =1, n > 4if e = —1, is a rank 3 graph
with automorphism group GO*(3), where Witt defect u is empty if n is odd,
otherwise g = (—¢£)™2. Since T, can be represented as the orthogonal direct
sum of a (+)-point and T,_;, the graph ¢, is locally £%_,. We denote T2 by
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1, and I7! by I7. Note that Z is a triple graph. We refer the interested
reader to [10] for more detailed information about 2. We will prove the
following theorem.

Theorem 1.1 Let © = O,,, be a connected locally £¢-graph, where ¢ = 1,
n>6,ore=—1,n> 17 Then O is isomorphic to X7 ;.

Remark 1

One may view the graphs ©,,,; as the collinearity graphs of certain c*C,(s, t)-
geometries G(Ony1) (here £ = n — (e + 9)/2), i.e. rank k + 2 geometries with
diagram

o- 0+ >+ O 0 g=—=4q

Conversely, the elements of the geometry may be viewed as ¢-cliques of the
graph with natural incidence,7 = 1,2,...,k+1,s+k+1. Meixner has proved
the following result [10].

Result 1.2 Let G be a residually connected flag-transitive c* - C,-geometry.
Then if the c' - Cy-residues (resp. ¢*- C,-residues) of G are isomorphic to G(£d)
(resp. to G(£7)) then G = G(E{ ;) (resp. G = G(Tr,4))-

Our theorem implies that the flag-transitivity assumption can be re-
placed to a geometric condition (X) from [10]. (X) states that in the collinear-
ity graph of G each i-clique is the shadow of some element,7 = 1,2,...k +
1,s+k+1.

Remark 2

The significance of 2213 as subgraphs of 3-transposition graphs Aj; of Fis-
cher’s sporadic simple groups Fis (1 = 2,3,4) is well-known. Namely, for
I' = Ay; the subgraph I'(z,y), where z and y are two vertices at distance 2,
is isomorphic to Tf,;. The author used theorem 1.1 to prove the following
result [11].

Result 1.3 Any connected locally A,y (resp. Asz) graph is isomorphic to
Ags (resp. to Ay or to its 3-fold antipodal cover). ’

2. Proof of the theorem

Preliminaries. A proof of the following technical statement is omitted.
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Lemma 2.1 Let I' = X%, n > 5, and let a,b,c be isotropic points of T' =
T(T).

If(a,0)=0,a+# b, (a,c) # 0 then

(iJatNectnNT =5,

(ii) at N bt NT is not isomorphic to T;%,.

(iii) Denote T, = T Np*. If To N T} contains {v} U T4(v) for some
v € VY, then a = b.

(iv) For any u € VI'\ VY,, the subgraph I'(u) N T, is isomorphic to

n—-2-

Neighbourhood of two vertices at distance two. We start with a simple
general fact. Let A be a connected graph satisfying the following property

(*) For any u € VA and v € VA \ (VA(u) U {u}) the subgraph A(u,v) is
isomorphic to some M, whose isomorphism type is independent on the
particular choice of u and v.

Lemma 2.2 Let T’ be locally A graph, where A satisfies (*). Then for any
u € VT, v € I'y(u) the graph I'(u,v) is locally Ma.

Note that I' = ¢, satisfies (*), whene = 1,n > 5 (resp. £ = —1,n > 4).
Indeed, the stabilizer of u € VI' in Aut(I') acts transitively on I'2(u). This
implies (*). Thus lemma 2.2 holds for locally I' graphs. The next statement
characterizes locally Mr-subgraphs of T'.

Proposition 2.3 Let I' = ¥, and eithere =1, n > 6, 0re = —1,n > 7.
Let 2 C T be a locally Mr graph. Then there exists a unique isotropic point
p C T(T) such that @ =T Npt.

Proof. We proceed by induction on n. It is straightforward to check its
basis. We leave it to the reader, noticing that fore = 1, n = 6 (resp. e = —1,
n = 6) it suffices to classify locally K33 U K3xz U K3xz (resp. Kaxa U K3xq U
K3y4) subgraphs of T'.

Now let us check the inductive step. Let {2 be a connected component of
alocally Mr subgraph of ', v; € VQ, vy € (v1). By the inductive hypothesis,
Q(v;) = T'(v;) N pf-, where p; is an isotropic point of T(I'(v;)), hence of T'(T')
(# = 1,2). Since p; C v{, it defines a locally Mry,,) subgraph T of I'(vy),
and T(v;) = Q(v1,v;). Hence by lemma 2.1 (iii), applied to I'(v,), p1 = p2.
Therefore = I'Np; . Finally, it is easy to check that £ is a unique connected
component of the subgraph under consideration. o
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Final part of the proof. Let © be a connected locally I' = X graph.
Here we assume either e =1, n > 6 or e = —1, n > 7. Pick a vertex u € VO.

Lemma 2.4

(i) 1(©) = w(B741), v(0) = v(231)-
(ii) © is a triple graph.

Proof. (i). The first claim follows from proposition 2.3. Indeed, counting in
two ways the edges between ©(u) and ©,(u), we obtain the precise value of the
number of vertices of ©. Let v € O,(u), w € O(v) \ O(u). By lemma 2.1 (iv)
we obtain O(u,v,w) = ¥.°,, hence nonempty. Thus the diameter of © equals
two, and we are done.

(i1). Assume that there exist three distinct verticesv; € ©3(u),i=1,2,3
such that T = O(u,v1) = O(u,v2) = O(u,v;). It contradicts the fact that
O(w), where w € VT, is a triple graph. Observe that |©,(u)| is exactly twice
the number of isotropic points in T'(T'). Hence we have no choice determining
the edges between O(u) and ©3(u). Now since X7, is a triple graph, the
same is true for ©. o

Let us denote I' = O(u), = = Oy(u). Let T be the graph defined on
isotropic points of T'(T'), two points are adjacent if they are not perpendicular.

Proposition 2.5 = is a two-fold cover of T.

Proof. Let (v1,v;) € EZ. By lemma 2.1 (iv) we have O(u,v1,v;) = .%,.
Denote by p; the isotropic point of T(I') such that pf NT = O(u,v;) (4 =
1,2). By proposition 2.3 such a point p; exists and is unique (¢ = 1,2). By
lemma 2.1 (i), (i), (p1,p2) # 0.

Conversely, assume p;, p, are nonperpendicular isotropic points of T'(T').
Denote by ; the locally Mr subgraph of I', which corresponds to p; (z = 1,2).
For each §2; we have exactly two vertices v;; € @,(u) such that ; = O(u,v;;)
(3,7 = 1,2). Considering the neighbourhood of v;1, we see that both vy, and
v32 cannot be ajacent to v1;. On the other hand k(=) = k(7). Hence one of vy,
and v, must be ajacent to v;;. We have shown that the mapping v — O(u,v),
where v € VE, is a covering from T to =. a

The latter statement implies that = possesses an involutory automor-
phism g, which interchanges any v,w € VE such that O(u,v) = O(u,w), and
fixes {u} U O(u) pointwise.

Consider the subgroup G, of Aut(©) generated by g, z € O(u). We
have G, = Aut(T'). Therefore © is the collinearity graph of a c* - C;-geometry
satisfying the conditions of result 1.2. Hence our result follows from it. How-
ever, we would like to give a complete proof of theorem 1.1 here.

323



PASECHNIK: LOCALLY 3-TRANSPOSITION GRAPHS

Our claim is that {g,|v € VO} is a class of 3-transpositions in Aut(®).
Indeed, clearly for any £ € ©(u) the involutions g, and g, commute. Now
let y € ©y(u). We must prove 7 = (gug,)® = 1. Note that 7 belongs to the
kernel of the action of the stabilizer of every v € O(u,y) on ©(u). Therefore
it fixes every vertex of ©. Our claim is proved. The use of the classification
of 3-transposition groups given in [8] completes the proof of theorem 1.1. O

Note: Hans Cuypers (personal communication) has suggested another idea
how to complete the proof, which is much more geometric. Namely, it may
be easily shown that the partial linear space on VO, whose lines are triples,
is an irreducible Fischer space (see introduction) (or a locally polar geometry
with affine planes, see Cuypers and Pasini [7]). Then the use of classification
of these objects [6] (resp. [7]) completes the proof.
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Coherent configurations derived from
quasiregular points in generalized
quadrangles

S. E. Payne

Abstract

Let § = (8?7, 7) be a translation generalized quadrangle with group
T of translations about the point p and having parameters (s,t), with
1 < s €t < s% The point p is a quasiregular point (as defined in
this paper). Using the points and lines of $ away from the point p we
construct a coherent configuration with 15 classes. Unfortunately, we
leave open the problem of deciding whether or not there are examples
with s < ¢ < §%,

1. Introduction and Review

Our standard reference for definitions and results concerning generalized
quadrangles (GQ) is the monograph [3] by S. E. Payne and J. A. Thas, and
we assume the reader has access to that work. Translation generalized quad-
rangles (TGQ), which are studied at some length in [3], especially in Chapter
8, provide the motivation for this paper. However, no familiarity with TGQ
is required for an understanding of this essay.

Let S = (P,B,I) be a GQ with parameters (s,t), s> 1, t > 1. IfS
is a TGQ with base point p (see [3] for the appropriate definitions), and if
s # t, there is a prime power q and an odd integer a for which s = ¢* and
t = ¢®*1. All known examples have @ = 1, i.e. ¢ = s?, and when q is a power
of 2, this is the only possibility. (If s = ¢, also s must be a prime power, and
there are examples with s = ¢t any prime power.) But for ¢ a power of an odd
prime, we can state the problem that originally motivated this article.

Problem 1.1 Is there a TGQ having parameters (s,t) with s <t < s? and
s odd?

In this paper we want to consider a more general problem. If S is a
TGQ with base point p, from results contained in [3] we know that each triad
of points (three points, no two collinear) contained in p' has exactly q + 1
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centers (points collinear with all three points of the triad). And each triad
(p,,y) containing p has either no center or exactly ¢ + 1 centers. (Write
z L y to denote that ¢ and y are collinear points; similarly, L 1 M denotes
that L and M are concurrent lines.) It is the existence of a point p such that
each triad containing p has 0 or q + 1 centers which makes it possible to
construct the coherent configuration that we wish to study. So throughout
the remainder of this essay that becomes the central hypothesis.

As this work took shape throughout 1990 - 91, we benefitted greatly
from conversations with and/or financial support arranged by the follow-
ing colleagues: S. Tsaranov, J. A. Thas, H. Van Maldeghem, E. E. Shult,
R. A. Liebler, D. Nichols and S. Hobart.

2. Quasiregular Points

Let S = (P, B, I) be a GQ with parameters (s,%),s > 1,¢ > 1. For any point =
of S let Tj(z) be the set of all triads of points contained in z'. The members
of Ty(z) are called the inner triads of z. Let T,(z) be the set of all triads
containing z. The members of T,(z) are called the outer triads of z. Put

spec,(z) = {|T"| : T € Ty(z)}, and spec,(z) = {|T*|: T € To(z)}.

The union of the inner spectrum of z (spec,(z)) and the outer spectrum
of = (spec,(z)) is the spectrum of z: spec(z) = {|T*|: T € Ti(z) U To(z)}.

The point z is said to be quasiregular provided there is an integer a
such that spec(z) C {0,1,1 + a}.

Each point or line of a classical GQ has a fairly small spectrum (see the
examples given at the end of this section), and in some cases the existence

of sufficiently many points with sufficiently small spectra guarantees that the
GQ is classical.

Problem 2.1 Is there an integer a such that spec,(z) C {1,1 + a} if and
only if there is an integer a for which spec,(z) C {0,1,1 + o} if and only if
the point z is quasiregular?

Let ¢ and y be distinct collinear points. Define a set of triads:
T(z)={T : T is a triad withy € T C z*}

Let Lo, Ly, Ly be three distinct lines through z. Fix points yo on Lo, y1 on Ly,
yo not collinear with y1. Let {yo,y1}* = {z = 2o, %1,...,ze}. For 0 <z < ¢, let
a; be the number of triads (yo,y1,y2) with y2 on L,, having exactly 7 centers
from among z, ...,z Then the total number of such triads is s = 3} a;. And
the number of pairs (z;,y;) with 1 < j < t, y2 on Lj, z; L y,, is equal to
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t=%40;.500=t—t=1/sY a;,— Yia; = ! o(t/s —i)a;. Hence
t t

O »

i<t/s i>t/s

It is immediate from (1) that ¢; = 0 for all i < ¢/s iff a; = 0 for all ¢ > t/s iff
s divides t and each triad (yo,¥1,¥) with y on L; has exactly 1+ t/s centers.
Also, it is clear that

If each triad in Ty(z) has 1 + b centers for some constant b, then

b=t/s. (2)

In order to make various counts easier, all triads in the next few paragraphs
are ordered triads.

Theorem 2.2 If each T € T,(z) has 1 + t/s centers, then each T € T(y)
has 1+ t/s centers.

Proof. |Ty(z)| = t(t—1)s* = |Te(y)|- Assume each triad of T,,(z) has 1 +t/s
centers, and let To(y) = {T1,...,T4}, d = t(t—1)s%. Let T; have 1+r; centers,
i.e. T; has r; centers different from y. First count the pairs (T}, w) for which
w € z*\ y* is a center of T;. The number of such pairs is st-t(t —1) = 3¢ r;.
Second, count the ordered triples (T}, w,w') for which w,w' € z* \ y* are
distinct centers of T;. Given w,w', T = (y, w,w’) C z' is a triad with 1 +¢/s
centers, t/s of which come from y* \ z*. So there are (¢/s)(¢/s — 1) triads T}
having w,w' as centers. So the desired count is t(t —1)s*(t/s)(t/s—1) = t*(¢t —
1)(t—s). On the other hand, given one of the d triads T; with r; centers, there
are ri(r; — 1) triples (Ti,w,w’). So t?(t — 1)(t — s) = ¥ ri(ri — 1). Adding the
previous count to this one yields Y972 = ¢2(t —1)(t—s)+t3(t—1)s = t3(¢—1).
It is well known that (¥¢7)? < d - Y¢r2, with equality iff each r; equals
Yri/d=1t/s. But () = s*4(t~ 1), and d- S ri =%t - 1)t3(t - 1) =
(X>7:)?. Hence r; = t/sforall:=1,...,d. o

By fixing ¢ and letting y vary over the points of zt \ {z}, we obtain
the following corollary.

Theorem 2.3 spec;(z) = {1+ t/s} iff spec,(z) C {0,1 +¢/s}.

Recall the following from Section 1.3 of [3]. Let z, y be fixed noncollinear
points. For each integer @, 0 < a < t+ 1, let N, be the number of triads
(z,v, z) having exactly a centers. Now suppose there are three distinct in-
tegers «, 8,7 with 0 < a,8,7 < 1 + ¢, for which § € {a, 3,7} implies that
Ns = 0. Note that we allow N, = 0 also, for example. Then we have the
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following formula.

_(SPt—st—s+t)By—(#*—1)s(B+7) +(t* — 1)(s +1)
(a—=B)a—1) '

The situation in Theorem 2.2 corresponds toa =0, S =1+t/s, Ny=0.In
this case we find (putting q = ¢/s):

N (3)

Ny = ts—1)(s*—1t) q(s—1)s(s—q) and

s+t - q+1 '
(2 —1)s?  s(t®—s)
N. = . 4
14t/s s+t q+1 ( )

Recall (1.2.4 of [3]) that if ¢ = s?, then specy(z) = {1 + ¢/s} for every
point z. So in fact we have

|speco(z)| = 1 iff ¢ = s?, in which case specy(z) = {1 +¢/s}. (5)
To complete this section we survey the classical examples.

Example 2.4 Q(4, q). Here all lines are regular with s = ¢ = q. So for any
line L, spec;,(L) = {1,1 + q} = specy(L). For q even, all points are regular.
So spec;(z) = specy(z) = {1,1 + q} for each point z. For q odd, all points are
antiregular, i.e. for each point z, spec;(z) = {2}, speco(z) = {0, 2}.

Example 2.5 Q(5,q). Here s = q, t = ¢° and all lines are regular. So for
each line L, spec;(L) = {1,1 + q}, specy(L) = {0,1,1 + q}. Each point is 3-
regular. This means that for each point triad T, |[T+| = 1+qand |T*4| = 1+q.
Moreover (see 1.4.2 (iii) of [3]), each point z € P\(T+UT*+) is collinear with
exactly two points of T+ U T+, So speci(z) = {1 + g}, spec,(z) = {1 +q}.

Example 2.6 H(4,q?). Here s = q%,¢ = ¢°. For each noncollinear pair (z,y)
of points, |{z,y}**| = 1 +¢. If (z,y, 2) is a triad with z- N{z,y}** # 0, then
(z,y, z) has a unique center. If (z,y, 2) is a triad with 2zt N{z,y}** = 0, then
(z,y,2) has 1 + q centers. And any triad T contained in {z,y}** has 1 +1¢
centers. Hence for any point z, spec;(z) = spec,(z) = {1,1+¢,1+t}. Now
consider a triad T = (L, M, N) of lines with axis K (i.e., K € {L,M,N}').
If N lies in the 3-space of PG(4, ¢°) spanned by L and M, then T has 1 + ¢
axes. If N is not in the 3-space spanned by L and M, then K is the unique
axis of T'. It follows that spec,(L) = {0,1,1 + ¢}, spec;(L) = {1,1 + q}, for
each line L.
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3. A Coherent Configuration

For the remainder of this article welet S = (P, B, I) be a GQ with parameters
(s,t), s > 1, t > 1, with a point p having spec;(p) = {a} for some constant
a. Then we know s divides ¢t and a = 1 + t/s. And spec,(p) C {0,1 + t/s},
with equality if and only if ¢ < s%. Put ¢ = t/s and fix a point z € P \ pt.
Then we have seen
_t(s—1)(s—q)
No=""—171
s(t2-1)
+1

is the number of acentric triads T = (pyz,y).  (6)

Nijg = is the number of triads T = (p, z,y) with 1 + ¢ centers.

(7)

To construct the coherent configuration, we want Ny > 0, so from now
on we assume s < t < s2.

Let X; = P\ p', so |X;| = s%t. Put X, = {L € B : p is not on L},
so |X2| = st(1 + t). We are going to construct a coherent configuration C on
X = X1 UX, (using definitions of D. G. Higman [2]) consisting of 15 relations
fo, -, fia- Notation: For L € B, L* ={p:pison L}.

fo = {(z,2z):z€ X1}
A {(z,y) e X1 x X, :z Ly#<z}
f2 {(z,y) € X1 x X; : (p,z,y) is a triad with 1 + g centers}.
fs = {(z,y) € X1 x X; : (p,z,y) is an acentric triad}.
fa {(z,L) € X1 x Xz :zison L}.
fs = {(z,L)€ X1 x X, :zis not on L and ztnL* EpJ‘}.
fo = {(z,L)€ X1 xX;:zisnot on L and z* NL* & p'}.
fr = fiCX;x X
fo = f5CXxX;.
fo = fLC X, x X (8)
fo = {(L,L): L€ Xz}
fao= {(LM)eXoxXs:L£M
and L meets M at a point of p* }.
fiz = {(L,M) € X, x X, : L does not meet M
but L and M meet the same line through p}.
fiz = {(L,M)€ X; x X, : L meets M
but L and M meet different lines through p}.
fis = {(L,M) € X; x X, : L does not meet M,
and L and M meet different lines through p}.
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Using the notation of D. G. Higman [2] we have I = {0,1,...,14}; Q =
{0,10}. So foU fio = A, the diagonal relation on X. Write f;» = f}, so ¢z =1*
for 0 <:<3and 10 <% <14, and 4* =7,5* =8,6* =9, and (s*)* =1 for
0<:<L 14,

Put no = |Xi| = s%; nio = |Xz| = st(¢t + 1). And put m; = |fi]
for 0 < ¢ < 14. For z in the domain of f;, put v; = |fi(z)|. Then it is
straightforward to compute the entries in the following table.

0 5%t 1

1 s2t(t+1)(s—1) (t+1)(s—1)

2| S -1)/(g+1) Niyg = s —1)/(g +1)

3 [ —D(s—a)/(g+1) [ No=t(s = 1)(s — 9)/(g +1)
4 s*t(t+ 1) t+1

5 s*t(t2 - 1) t2—-1

6 S22t + 1) (s —1) t(t+1)(s—1) ©)
7 sit(t+1) s

8 s*(2 — 1) s(t—1)

9 S22 (t+1)(s — 1) st(s — 1)

10 st(t+1) 1

11 st(t2 —1) t—1

12 st?(t+ 1)(s — 1) t(s—1)

13 s22(t+ 1) st

14 s22(¢2 — 1) st(t —1)

For 0 < 1,3,k < 14, if (z,y) € f, put

p = {z € X : (z,2) € fi,(2,9) € fi}l. (10)
The following identities, although lifted straight from [2], are easily

Py = 0, otherwise.

verified.
koo_ bix, 0 <6
Pio 0, otherwise.
koo ] b, 7<4" <14
Pizo 0, otherwise.
6; 0<71<6;
k FLY) 271309
L= 1
Po; { 0, otherwise. (11)
kooo_ ) o 1<5 <14
P1o,; 0, otherwise.
0 { 5,'1'#(),', 0<1 < 6,
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10 _ 8ijevy, 7<1 <14
Pij 0, otherwise.
Py = Pheier 0<4,5,k < 14 (12)
Pk = pijevi, 04,5,k < 14, (13)

I = {0,1,2,8}; rop= 1" =4.
10 {4,5,6}; I'%°={7,8,9}; 7010 ="100=3. (14)
e = £10,11,12,13,14}; r010=5; r=|I| =15.

If pf; # 0, there must be a, 8,7 € {0,10} for which

i€I* j€IP and k€ I (15)

P = Y.pk=w, for 0<4,k<6.

7
P?j* = prj =, for 0 < k*,7* <6. (16)
P2 = Yph=wfor 7<4,k< 14

7
pr] = 'Uj‘ fOI' 7 S ’C,‘l,j,‘l S 14

10
Pjj*

Let A; be an n x n (0, 1)-incidence matrix of f;, n = no + nyo, corre-
sponding to some ordering of X. Then

AiA; = ZP?,’AI:: (17)
k
and
> plipe; = Y PYpk,- (18)

Let M; = (pfj) be the matrix with pfj in row z and column k. With the aid
of (18) it follows that
MM; =" pf; M, (19)
k

and 8 : A; — M; induces an algebra isomorphism.

The next major step in the analysis of C is to compute the intersection
matrices M;, their eigenvalues, and the multiplicities of those as eigenvalues
of the incidence matrices A4;.
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4. The Intersection Matrices

Before exhibiting any M; we give some specific counting lemmas that help
determine the pfj. Let L be a line not incident with p, and define p’ to be
the point on L collinear with p. Let y € X3,y not on L but collinear with p'.
Then there are s points z on L for which (z,y) € f,. This says

P34 =s= sz- (20)

Continuing with p,p’, L as above, let y € X, be chosen so that y is
not collinear with p', and define y' to be the point of L collinear with y.
So p’ and y' are not collinear and we may define the point-line pair (p”, L)
by pIL Ip"Iyy'. So p" # y. There are t — 1 lines L,,..., L, through p and
different from Lo = pp’ and L, = pp”. Let w; be the point of L; collinear
with y, 2 < j < t, and z, the point of L collinear with w;. So (p,y,z;) is a
triad with center w;. Since each centric triad containing p has exactly 1 + ¢
centers, the points z; each get labeled 1 + ¢ times. Hence

L has (t — 1)/(q + 1) points z for which (z,y) € f2 (21)

and has (s—1)—(¢t—1)/(¢+1) = (s—q)/(q+1) points ' for which (z',y) € fs.

This proves

Pa=pn=0—-1)/(g+1) Pa=prs=(s—q)/(g+1). (22

Note 4.1 Both (t—1)/(g+1) and (s +1)/(q + 1) must be positive integers.

It is quite a tedious task to compute all the pf]-, although relations
(11) through (16) of the preceding section help immensely. Possibly the most
difficult entry to compute, among those which we computed directly, was p3,.
Hence we record the details in this one case.

Theorem 4.2 p3, = (¢t +1)(t —1)*/(q + 1)

Proof. Start with (z,y) € fs. Let Ly,..., L be the lines through p. Let
z; (resp., y;) be the point of L; collinear with z (resp., y). By hypothesis
z; £y, 0 <1<t Put M; = zz;, N; = yyi. For each i there is a unique #'
(z # 4') for which M; meets N at a point ¢;. Each point z € {z;,y:}*\ {p,:}
satisfies (z,2) € f2 and (2,y) € fa.

Now for any %, let j be an index different from 2,7’

If w; is the point of M; collinear with y;, and w} is the point of N;
collinear with z;, then all —2 points of {z;,y;}* \ {p, wi, wi} are points z for
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which (z,z) € f and (2,y) € fo- Soin (t+ 1)t - 1)+ (¢t + 1)t —-1)(t—-2) =

(t+1)(t—1)* ways a point z is obtained for which (z,z) € f, and (z,y) € fa.

But each such z is collinear with 1 +¢ z;’s and 1+ q y;’s, so is counted (1 +g)?

times. a
We now exhibit only the most basic M;’s.

M, = diag(h, 03, I3, 05); My = dia,g(04, I3, 03,15); My 4+ Mo = Iis. (23)

For My, if p§ # 0 there is an a € {0,10} for which 4,k € I*°. So the
nonzero blocks of M, are
M; = (ph), 0<i,k <3, and M;° = (pf), T<4,k<9.
So
Mlo O4x3 O4x3 O4x5
03)(4 03 03 O3x5
M = . 24
! Osxs | O3 | MI° | Osxs (24)
Osxs | Osx3 | Osxa | Osxs

Columns 0 and 1 of M} are easy to determine using (22). And p%, =
0, phy =t—gq, pjy = (q+1)(s -1+t —q)[(t—1)/(¢+1)] - 1) = (s —1)(gt +
1)/(g +1).

Since column sums equal v;, p%, is easily determined. Finally, p3, = 0
and p}; = ¢+ 1. With the help of (22), p3, = (t*—1)/(g+1), and M7 is easily
completed.

0 1 0 0
(t+1)(s—1) s—2 t—q t+1
MO = 0 t(t—1) (s—1)(qt+1) 2 —1
+1 g+1 +1
. et (-ne-g) @+nlb-2-1)
g+1 g+1 qg+1

(25)
The eigenvalues of M} are

o=(t+1)(s—1); b=s—t—1, 0,=5s—1; 63 =—(t+1). (26)

In a similar fashion we may proceed to determine M}° and all the
other M; along with their eigenvalues and their corresponding multiplicities.
For the sake of brevity, and since the other M, are really determined by M,
anyway, these computations are suppressed in this published version.

5. [Eigenvalue Multiplicities of A;

Specializing eq. (17), if (ao, a1, a3, a3) is row 1 of M}, we have
3 3
Az = EpflAk = EakAk. (27)
0 0
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And if (bo, b1, b2, b3) is row 1 (just below row 0) of (M?)?,

A= ipflAlAk = Xs: (ipflp{k) A = Xs:bjAj- (28)
0 7=0 \k=0 =0
We want to find a, 8, v, § such that if
po(z) = az®+ PBz® +z + 6, then po(4;) = J. (29)
Put k= (t+1)(s—1) =p%;, and
p(z) = (z — k)po(). (30)
It will turn out, of course, that the four roots of p(z) = 0 are the

eigenvalues of M?, since clearly p(A4;) = 0. Since I = Ay, A, Az, A; are

linearly independent,

aZbJ’Aj+ﬂZajAj+’)’A1+5I =J =IT+A+A+A4;

(31)

yields a system of four equations in the variables a, 3,7, §, with the following

solution (put A = a2bs — azbs):

= (a2 —a3)/A
(bs — b2)/ A
= [A = ai(bs — bs) — bi(az — as)]/AA
= [A — ao(bs — b2) — bo(az — a3)]/A

’mn R ™R
Il

Of course we already know the a; and b;.

a = k = (t+1)(s—1) b = k(s—2)

a = s—2 by = k+(s—2)2+st(t—2q+1)
a; = t—gq by = (t—q)(st—2t+3s—3)

az = t+1 by = (t+1)(st+2s—3t—3)

From eq. (32) and (33) we have

A = —qk(s+1t)

aA = —(qg+1)

BA = —(qg+1)(2t—2s+3)

YA = —(q+1)(#* —3st+ s* —4s+ 4t —3)

A = (q+1)(t+1)(s—1)(t—s+1)
Now we can write out p(z) and factor it:

p(g)=a(z—k)z+t+1)(z—s+1)(z—s+t+1).
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Put f(z) = p(z)/a = [Tio(z — 6;), with 6; labeled as in eq. (26).
Let d; be the multiplicity of 6; as an eigenvalue of the real symmetric
(and hence diagonalizable) matrix A;. So we have

di = tr(fi(A1))/fi(8:), (36)

where tr(C)is the trace of C, and fi(z) = f(z)/(z—0;). We need the following:
t(I) = s2t; tr(Ay) = 0; tr(A2) = ks?t; tr(A3) = ks?t(s —2).  (37)
Since fa(2) = (¢ — 80)(@ — 1)(c — 8), we have tr(fa(A1)) = tr(A43) — (6o +

01 + 02)tr(Af) + (0001 + 0002 + 0102)tr(A1) — 000102tr(1) = kszt(t — 82). And
f3(83) = —s*(t + 1)(s + t). So eventually we find

ds = t(s*—t)(s —1)/(s +1). (38)

Proceeding in the same manner, we find the remaining entries in the following
array.

) 6; d;

0|(t+1)(s—1) 1

1 s—t—1 (t+1)(s—1) (39)

2 s—1 s(t2—1)/(g+1) = Ni4q

3] —G+D) |a@ DD/t =N

Unfortunately all the d; are evidently positive integers!

Let A = {I, A), A;, A3} and B = {1, A,, A%, A?}. So A and B are two
(ordered) bases for the Bose-Mesner algebra they span. Let C be the 4 x 4
matrix whose jth column is the coordinate matrix [A{] 4 of Al with respect
to the basis 4, 0 <5 <3. So

10 Qg bo
_ 01 a1 bl _ 12 A
=100 a & ‘(023>’ (40)
00 as b3
and AR
I, —AB~
-1 _ 2
o= (-4, o
with
st+2s—3t—3 st—2t+3s—3
B-1= Al by —by ) _ (s+t)(t—4q) (s+t)St+1)
—as [+ 23 1 -

(s+t)(t—4q) (s+t)(t+1)
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And the jth column of C~1 is [A;]s. So A; and Aj; can be calculated explicitly
as polynomials in A;. Hence A;, A;, A; have common eigenspaces. Let W
be the eigenspace (of column vectors) of A; belonging to 6;. So d; = v; =
dim(W;). Hence W; is an eigenspace of A;, 0 <4,j < 3.

Let 6;,(Aj) = 6,; be the eigenvalue of A; on W;.

s(#—1) #s—1)(s—q)

I t+1)(s—1)

+11) q(+1)
s(t — —t(s—gq
1 s—1 —8 0
1 —(t+1) 0 t

Note 5.1 001- = dim(Wj) =d; = v;.
Put 5,‘ = [00,‘, 01,', 02,’, 03,‘]‘. Then
(M?)tf,' = 6, = @Mf@_l = diag(eo]-, 015,625, 93]') (43)

and ©? = s%].

The incidence matrices A were all obtained from some ordering of
X; =P\p" ={y1,...,¥.2:} Choose a point y in X; and put T, = {y; €
Xi: (v,95) € fe}. Then T = (Ty,T4,T,,I'3) partitions X;, and |I;| = v;.
Put 75 = |{(w,v) € T x T :(u,v) € fi}|. Thenvf/v; = piy = Af =
(vE/vi) = (MR) is the matrix obtained by blocking Ax according to the
partition I' and replacing each block by its average row sum. We say that the
vector £ = (Zo, Z1, 2, 23)' blows up to I'(Z) = (21, ..., 2,2)" where z; = z; iff
y; €T, 0<4<3, 1<5 <$%.

Note 5.2 &; blows up to a vectorin W;, 0 <35 <3.

In setting up the partition I', etc., we could have started with any point
z of X, in place of y.

Conjecture 5.3 The vectors in W; blown up from the vectors obtained from
the v; points z € f;(y) form a basis for W;, 0 <1 < 3.

A little thought shows that for a point yx € I'; = f;(y), the eigenvector
Z; = (6o, 615,825, 03;)° of (M7)", when blown up with respect to the point yx,
gives the kth column of 33 6,;4,. And the eigenvalue of this latter matrix on
Wi is 32, 056k = s%t- 8k, since ©? = s%tI. So the rank of ; 6;;A; equals
dim(Wj). This means the above Conjecture could possibly be true. In fact, if
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S is the GQ with s = t = 3 and with all points antiregular, a hand calculation
shows that the conjecture is indeed true.

6. Conclusion

The goal of this investigation was to find restrictions on the parameters of
those GQ having a quasiregular point, and if possible to find restrictions
on the parameters of a translation generalized quadrangle. In fact, the only
restriction we have found is that if s < ¢ < s? and q = t/s, then g+ 1 divides
t—1, or equivalently, g+1 divides s—q. And this restriction was found early in
the computations without any real need for the coherent configuration. One
other thing to compute would be the Krein parameters (cf. [1]). We did. They
are all nonnegative. One then might consider which ones are equal to zero.
We did that also. Unfortunately, those that are equal to zero are precisely the
ones that are predicted to be zero by the general theory (cf.[4]).

On the one hand it may be possible that some other approach to the
study of the coherent configuration will eventually turn up additional restric-
tions. On the other hand, if the corresponding GQ are ever discovered, we
have worked out here many details concerning the associated coherent con-
figuration.
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On Veldkamp planes
E. E. Shult

Abstract

If Veldkamp lines exist for a point-line geometry I', then the Veldkamp
space V is a linear space. In addition to the ordinary poset structure of
the subspaces of V, one automatically obtains in addition an Aut (T)-
invariant subposet of flats. This is because V has the structure of a
partial matroid. It is shown that these two poset structures diverge at
the level of Veldkamp planes, for all embeddable proper Grassmann
spaces, but coincide at this level for all half-spin geometries.

1. Introduction

Let T' = (P, L) be a rank 2 incidence geometry of points (P) and lines (£).
A geometric hyperplane is a proper subspace of I' which intersects the
point-shadow of each line in at least one point. In a previous study ([5])
conditions implying a partial matroid structure on the collection V of all
geometric hyperplanes of a point-line geometry were given. For each positive
integer 7, the condition is
(1.1) (VELDKAMP (r — 1)-SPACES EXIST) For any collection {A;} of k&
geometric hyperplanes of a point-line geometry I' = (P, £),1 <k < r,
and any further hyperplane A,

AiNA,N.---NA; CA implies
AlﬂAzﬂ"'ﬂAk_lgA or AlﬂAgﬂ"'ﬂAk_lﬂAgAk.

When k = 1, the intersection A; N A3 N---N A is understood to represent

the set P of all points. In this case (1.1) becomes

(1.2) (VELDKAMP POINTS EXIST) If for hyperplanes A;, A of T, we have
A; C A, then A C A, - that is, no hyperplane is properly contained in
another.

If k£ = 2, the condition is

(1.3) (VELDKAMP LINES EXIST) Veldkamp points exist for I' and if A,
A;, and A are hyperplanes of I', then A; N 4; C A implies A; = A or
AiNACA,.

The import of the second condition is that if we let V, be the set of in-

tersections of pairs of distinct geometric hyperplanes (the Veldkamp lines),
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then the incidence system (V,V,, D) is a linear space, for the point shadow of
any Veldkamp line is determined by any two of its distinct Veldkamp points.
This linear space is called the Veldkamp space and is only defined when
Veldkamp lines exist.
Under certain conditions the Veldkamp space can be shown to be a
projective space. We mention here two criteria which insure this:
CRITERION 1.T = (P, £) possesses Veldkamp planes and Teirlinck’s con-
dition holds: namely, if A and B are hyperplanes and p is a point not
in AU B, then there is a hyperplane C containing p and AN B.
CRITERION 2. (Peter Johnson) I possesses Veldkamp lines and there exists
an embedding e : I' — P, where P is a projective space, such that every
geometric hyperplane H of ' arises from this embedding - i.e. there
exists a projective hyperplane H of P such that H = ™! (H Ne(P)).
(For the definitions of (projective) embeddings, the reader may consult any
one of [1], [6], or [4]). In the previous study on Veldkamp lines ([5]), the au-
thor was able to exploit criterion 2 along with previous results on hyperplanes
arising from an embedding to show that the Veldkamp space of the Grass-
mann spaces A, 4(D), the half-spin geometries D, ,(F), and the exceptional
geometries Eg (F) (where D is a division ring, F' is a field) are all projective
spaces,
Aside from the subspace structure of the Veldkamp space, there is also
a natural dependence relation on V which defines a partial-matroid structure.
Let {Ai||s = 1,...,k} be a collection of hyperplanes of I' - that is, a finite
subset of V. A hyperplane A is said to depend on {4;|i = 1,...,k}, if and
only if A contains the intersection 4; N A; N --- N Ag. Under this definition,
V satisfies the first two axioms of a dependence theory (or matroid), namely
(Reflexivity) Any element of V depends on any finite subset of V which
contains it as a member.
(Transitivity) If A depends on the finite subset X of V, and every element
of X depends on the same finite subset Y of V, then A dependson Y.
What is missing, of course, is the famous “exchange axiom”. The condition
(1.1), that Veldkamp (r — 1)-spaces exist, can now be interpreted as a limited
version of the exchange axiom. It says
(r-exchange axiom) If k is a positive integer not exceeding r, and A depends
on {Ai, Az, ..., A} but not on {4;, Az, ..., Ak_1}, then Ai depends on
{A1, Az, ..., Ak-1, A}.
We call a dependence relation on V x {finite subsets of V'} satisfying the three
axioms just listed, an r-partial matroid.
Of course, even without any particular version of the exchange axiom,
one can still define independent sets and flats. A collection of hyperplanes
{A;, 4,,...,A,} is independent if and only if the intersection A; N A2 N
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---N A, cannot be the intersection over a proper subset of {4;}. Given any
subset X of V, the flat generated by X is the subset F(X) of all elements
of V which depend on a finite subset of X.

At this stage, we see that if Veldkamp lines at least exist, there are two
sorts of partially ordered structures defined on certain subsets of V: (1) the
partially ordered system of subspaces of the Veldkamp space, and
(2) the partially ordered system of flats of the r-partial matroid.

To what extent do these two partially ordered structures coincide?
There are two immediate elementary observations that can be made:

(1.4) (i) Every flat is a subspace of the Veldkamp space.

(ii) For each integer k < r, every subspace of the Veldkamp space

generated by k points is a flat.

But for values of k larger than r, many Veldkamp subspaces generated by &
points are not flats. So in fact V supports two distinct dependence relations
(the one given above, and subspace dependence in which a point of (V, V)
depends on a finite set of points if and only if it is in the subspace generated
by the latter set). Yet both relations (or partially ordered systems, if one
takes that point of view) admit the action of the group Aut(T').

We give here a classical example at low rank. Consider the (embedded)
classical rank 3 polar space defined by a non-degenerate quadric @ of maximal
Witt index on PG(5, F). One may represent this projective space as P(V)
where V = F(®), and ¢ is defined by Q(cu,...,as) = cnas + azay + ascs.
Then any functional f € V* defines a hyperplane H = Hy as the set of all
@-singular 1-spaces in ker(f). Thus we can find hyperplanes A, and A, which
are generalized quadrangles of type @Q(4, F') for which A; N A; is an elliptic
quadric @ (3, F). We can choose hyperplanes A; and A, such that A, meets
AN A, at a conic C, and A3 = p* for a point pin C. Then A;NA;NA; = {p}.
Thus
(1.5) (i) AinNANnA;zis properly contained in A; N A, N A4, and

(ii) A1 N Az ¢ Aa.
Comparing with (1.1) this means the following property fails:
(1.8) (Veldkamp planes exist).

(1) Veldkamp lines exist.

(2) If A4,..., A4 are hyperplanes such that A; N A, N A3 C A4 then

either Ay N Ay N Az =A; N Ay NAsorelse AN A; C Ay

In fact, it is property (2) which fails, for Veldkamp lines exist (as they do
for all polar spaces of rank > 3 having thick lines (see, for example [5])). In
fact it is well known that all hyperplanes of this polar space arise from its
natural embedding in PG(5, F), so, by Criterion 2, the Veldkamp space is a
projective space. Yet, since Veldkamp planes don’t exist, it carries with it a
proper (6, F)-invariant subcollection of flats which is somehow a natural
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invariant since it is defined entirely by the polar space itself. We will show
that this phenomenon persists for all proper embeddable Grassmann spaces
in

Theorem 1.1 If T' = G(k,V) is the Grassmann space whose points and
lines are respectively the k-subspaces and (k — 1,k + 1)-subspace flags of
an n-dimensional vector space V over a fleld F (2 < k < dimV — 2), then
Veldkamp planes do not exist for T.

There is also an adjunct result for the non-embeddable case.

Theorem 1.2 Suppose I' is the corresponding Grassmann space of the k-
subspaces of a vector space V over a non-commutative division ring D (k
is an Integer greater than 1 and less than dimV — 1; V may have infinite
dimension here). Then the Veldkamp space is not projective.

By way of contrast we have

Theorem 1.3 Veldkamp planes exist for the half-spin geometries (the Lie
incidence geometries of type Dy, n > 4).

(For the definition of this geometry see [1].) As we have already remarked, the
Veldkamp space of a half-spin geometry is a projective space. The theorem
says that if there is any disparity between the Veldkamp subspace structure
and the matroidal structure, it must occur at higher rank. This result has at
least one interesting corollary.

Corollary 1.4 Any subspace of codimension at most three in the 2"!-di-
mensional half-spin module for *(2n, F) is spanned by the pure spinors
within it.

2. Proofs of theorems 1 and 2

The Grassmann space G,(V) is the point-line geometry (P, L), whose set
of points P is the collection of all k-dimensional subspaces of the vector space
V, and whose lines are the pairs (A, B) where A is a (k — 1)-dimensional
subspace of the (k + 1)-subspace B - that is, the set of (k—1, k + 1)-subspace
flags. A “point” C is incident with a “line” (A, B) ifand onlyif ACC C B
as subspaces of V. Evidently k < dim(V). If k = 1 or if k = dim(V) — 1 when
the latter is finite, then Gx(V') is just the projective space P(V) or P(V*).
Otherwise we say that Gi(V') is a proper Grassmann space. We say that
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Ge(V) has finite rank if and only if V is finite-dimensional.

(1) The embeddable case. Here D is a field and there is an injective
mapping e : P — P, where P := P (A*)(V)), the k-fold wedge product of V
with itself, taking P bijectively onto the set of pure 1-spaces of U = A®}(V),
so that the point shadow of each line is mapped onto the set of 1-spaces of
a suitable totally pure 2-subspace depending on that line. This produces an
embedding e : I' - P of the point-line geometry (P, £) into the projective
space P(U).

Let {z1,...,Zn+1} = B be a basis for the vector space V. Then the
set BAB = {ziy A--- Ayl <4 <+ <4 < n+ 1} is a basis for
the vector space U = A(")(V). Let W be the 4-space (z,,z,,Z3,z4) and let
=25 A AZgyz. Then S := e (e(P)NP(AGW)Aw)) is a symplecton of
T of type A3,2.

Let A be any geometric hyperplane of S. Then by [4] there is a functional
f of AGX(W) such that all pure 1-spaces of A®)(W) which are in the kernel
of f are precisely the images of the hyperplane A. We form the direct sum
(2.1) AB(V) = AB(W)Au® BF

where B is the set of b in BAB which are not of the form of exactly two factors
from the set {z,,z2,23, %4} being wedged with u (there are exactly : —

6 such basis elements b). Let = be the projection AN(V) —» ACW) A u
with respect to the direct sum (2.1). We define a functional f of A*)(V) by
declaring its value on each basis element of B A B as follows:

f())=0ifbisin B,

f(:c,-/\:c,-/\u):f(z,-/\z]-)forl§i§j§4.

Then A := e~(e(P)N P(ker(f))) is a geometric hyperplane of I' satisfying
(2.2) AnS = A.
Now by the Klein correspondence, the polar space S is of type @*(5, F). Thus,
by the remarks of the introduction, there exist four hyperplanes A;, As,
Az, Ay of S such that
(2.3) (i) A1N A;N A4 properly contains A; N A; N As, and
(i1) Ay N Ay & A,

We now form the hyperplanes A; defined by functionals fi of ARV
as above, for 1 = 1,2, 3,4. We claim that
(2.4) A;n AN A, C A,
Suppose v = ¥ a;b; (b; ranging over B A B) was a vector of A®¥)(V) satisfying
f, = 0, for 2 = 1,2,3. We must show f4 = 0. Now each element of A(z)(W) Au
is uniquely express1ble in the form w A u where w € A(z)(W) Thus we can
write 7(v) = vy Au where vy is in A(z)(W). Now from the definition of the fk
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we see that f,(b;) = 0 for all but the six values b;; = z; Az;Au, 1 <1< j <4
ofBAl?—B.'{'hus )
(2:5) fu(®) = Fuln(0)) = fu(on Au) = f(ue), k= 1,...,4
But A; N 4, N A3 C A4 means
(2.8) fi(vx) =0for k =1,2,3 implies fy(vy) = 0.
Thus from (2.5) and (2.6), our claim follows.
Now we see from the claim (2.4) and (2.2) that
(2.7) AinAd,n A, properly contains AN AN A3, and A; N A, ¢ A,
Thus Veldkamp planes do not exist, proving Theorem 1.

(2) The non-embeddable case. Here D is a non-commutative division
ring. In this case, the hyperplanes of G¢(V) are completely described by the
Corollary to the Main Theorem of [2]. Let R be a subspace of V of codimension
k. Set H(R) to be the set of k-dimensional subspaces V which intersect R
non-trivially. Then it is a Lemma of [2] that H(R) is a hyperplane of Gi(V).
The Corollary says that in this non-embeddable case, every hyperplane of
Gr(V) has the form H(R).

Now we can calculate the Veldkamp space V(I') directly. We know its
points; we only need to know its lines, and, since Veldkamp lines exist, these
can be determined by examining intersections of the H(R).

First suppose R, and R, are two subspaces of codimension k in V.
What are the H(R) which contain H(R,) N H(R,)?

Assume then H(R) D H(R,) N H(R;). If R did not contain R; N Ry,
one could find a vector r in R N Ry — R, form a (k — 1)-space complement
U to R®(r) in V, and thus obtain a k-space {r) @ U which meets R, and
R, non-trivially, but meets R trivially. Since this violates our assumption, we
have
(2.8) R contains R; N R,.

Also, suppose we could find non-zero vectors r; € R; — R, ¢ = 1, 2, such that
E = (R,r1,r3) = R® (r1) & (r2) is a direct sum. Then if U is a (k — 2)-space
complement to E in V, then (r) @ (r2) @ U is a k-subspace of V meeting
the R; non-trivially, but meeting R trivially. Thus there is no such choice of
r; € R; — R. This implies

(2.9) Either

(i) R is one of the R;, or

(i) Ri+ R= R+ R = R, + R, and this subspace contains R as a

hyperplane.

In case (ii) of (2.9), R; N R, has codimension 1 in each R;, and R
is a space of codimension k incident with both R; N R, and R; + Ry of
codimension k—1. These values of R (along with R, and R,) form the “points”
of the Grassmann line of G,(V*) determined by R, and R;. The corresponding
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Veldkamp line is thick.

Otherwise we have R; N R, of codimension greater than k£ +1 and case
(i) of (2.9) lists the only possibilities for R. The corresponding Veldkamp line
is thin; its point shadow is {R,, R,}.

Thus we have a bijection V — Gi(V*) given by H(R) — R, where R
is regarded as a k-subspace of the dual space. The thick lines of £(V) are
mapped onto the lines of the Grassmann space G,(V*), all other lines of L(V)
are thin, Since the Grassmann space contains two intersecting lines not in
a singular subspace, the Veldkamp space contains a plane with exactly two
thick lines, and all remaining lines thin. Such a plane cannot be a generalized
projective plane, and so the Veldkamp space is not a generalized projective
space in this case.

3. Some preliminary results needed for theorem 1.3
and corollary 1.4

We should first standardize some notation regarding point-line geometries.
First dr(p, q) denotes the distance in the point-collinearity graph from point
p to point g. For each non-negative integer k we let A}(p) be the set of points
at distance at most k from point p: thus A%(p) = {p} and A}(p) = p' in
the usual notation. A subspace S of ' = (P,L) is convex if it contains
the intermediate vertices of all geodesic paths of the point-collinearity graph
connecting any two of its points. For any subset X of P, (X)r, the convex
closure of X, is the intersection of all convex subspaces containing X.
The following three results were proved in [5].

Lemma 3.1 To show that Veldkamp (r — 1)-spaces exist for some point-line
geometry I' = (P, L), it is sufficient to show for any convex subspace S of I,
and any collection {4, Aa, ..., A,} of hyperplanes of §, s < r, that the point
set (A1NA2N---NA,1)— (A1 NAyN---NA,) has a connected collinearity
graph. (Graphs with empty vertex set are considered connected.)

Corollary 3.2 The sufficient condition of Lemma 3.1 holds for any non-
degenerate polar space of rank at least r. Hence Veldkamp (r — 1)-spaces
exist for these polar spaces.

Lemma 3.3 Suppose I' = (P, L) is a point-line geometry for which Veld-
kamp (r — 1)-spaces exist. Suppose further that every geometric hyperplane
of I' arises from an embedding e : I' — P for some projective space P. Then
every subspace of P of codimension at most r is spanned by the points of
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e(P) which are contained in it.

In the previous study of Veldkamp lines ([5]) certain classes of point-line
geometries &, were defined for each integer n > 2. If I' = (P, L) is in &,, then
I' must satisfy the following three axioms:

(E1) T has thick lines and is connected (i.e. has either a connected point
collinearity graph, or equivalently a connected bipartite incidence graph).
(E2) (i) For any positive integer k < n, every geodesic path of length k
extends to one of length n.
(ii) The point-collinearity graph has diameter n, and for each point
p, the set A%_(p) := {q € Plldr(p,q) < n — 1} is a geometric
hyperplane of T
(E3) If p and g are distinct points of I' with dr(p,q) < k, k > 2, then the
convex closure (p, g)r is a subspace geometry belonging to &.

IfTisin &,, and 2 < k < n, the symbol & (T') will denote the collection
of subspaces of the form (p, g)r where dr(p, ¢) = k. It is easy to see that the
geometries in &, are non-degenerate polar spaces. The members of £(T') are
called symplecta.

Examples of geometries of &,

Geometry diameter | symplecton type
dual polar spaces Cp, n classical GQ
Grassmann spaces Azn—1,n n QF(6, F)

half spin geometries Dy, ,, n even n/2 Q*(8, F)
exceptional geometry E7, 3 Qt(12, F)

The geometries of £, were introduced in [5] to give a general setting for
a string of lemmata which could then be applied to any of its members. Of
fundamental interest to us here is

Lemma 3.4 Suppose I' is a geometry belonging to &,. Suppose (i) X =
{z1,23,...,z,} are points of a symplecton S which span a (singular) (r —1)-
dimensional projective space, or (ii) X = {1, %, z3,z4} Is a set of four points
of a symplecton, any two of which are collinear except for the pair {z;,z4}.
Then the sets {H, = A}_,(z)||z € X} are independent hyperplanes of T,

Proof: This is Corollary 6.4 of [5].
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4. Half-spin geometries have Veldkamp planes

The half-spin geometries of type Dy, , form a diagram geometry with diagram

DpiDp2Dps S My £ _—F

3 <

having n nodes. Here P and £ are the points and lines of the geometry, M’
is a class of maximal singular subspaces of projective dimension n — 1, Mj is
a class of maximal singular PG(3)’s, and S is the class of symplecta, which
are type D4. The diameter of the point-collinearity graph is [n/2]. The Dy are
half-spin subspaces of type Dy and the convex closure (p, g)r for two points
at distance d > 2, is a member of the class D4 (that is, members of £4(T') in
the sense of the last section).

Suppose now, I' is a half-spin geometry of type D, ,, where n is even.
Then, as already remarked, I' is a member of the class £,,, where m = n/2.
Suppose D is a geometry in D,_;. Then for each point z in P — D, M, =
z' N D is a maximal singular subspace of M'(D), the collection of maximal
singular subspaces playing the role of M’ in the diagram D,_; for D. The
singular subspace generated by z and M, is then a member of M’. Now the
point-collinearity graph of the geometry D of type D,_1,-1 has diameter
m —1 = [(n —1)/2]. For each point y in D, and singular subspace M of
M'(D), A _,(y) N M is either (i) all of M, (ii) of codimension two in M or
(iii) empty. The set

Np(M) :={y € D||A;,_,(y) " M # 0}

is called the set of points near M, and is a geometric hyperplane of D in
Dsm_1. For any point z, as noted, A},_,(z) is a hyperplane of T, and if z is
not in D,

(4.1) A% _,(z)N D = Np(M.)

where M, =zt N D.

Now if D; and D, are two members of D,,_;, then D; N D, is either a
subspace in D,_» (where by convention D, := § and D, := M; for the cases
n = 6 and 5) or D; N D, is empty. In the latter case D, and D, are said to
be opposite. In that case there are isomorphisms
(4.2) Y12 ¢ (D1,L(D1)) — (M'(D2),L(D2))

Y : (D2, L(D2)) — (M'(Dy),L(Dr))

where £(D;) := LN Res (D;), the lines of I incident with D;, ¢ = 1,2. (Noting
that each maximal singular subspace belonging to M'(D) is a hyperplane of
a unique member of M’ incident with D, and, conversely, that each mem-
ber of M’ N Res(D) meets D at a member of M'(D), the sets M'(D) and
M’ N Res(D) may be identified in (4.2) as far as incidence is concerned.)
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By considering three pairwise opposite members of D,_; (they must
exist since classical polar spaces of reduced rank at least 2 possess 3-cocliques)
one infers from (4.2)

(4.3) (i) Any two members of D,,_, are isomorphic.
(ii) For any D in Dp_,, there is a twisting automorphism

o : (D, £(D)) — (M'(D), (D).

We exploit the dualities between opposite members of D,_; as well as the
self-duality of (4.3)(ii) in the proof of the following lemma.

Lemma 4.1 Let D be a half-spin geometry of type D,, , wheren = 2m+1 is
odd. Suppose {M,,..., M} is a set of four members of M'(D) (the singular
subspaces of D corresponding to the objects of type M’ in the diagram D, ).

We suppose that M; N M; = L;; is a line for any {t,7} a 2-set of
{1,2,3,4} distinct from {1,4}, where L1 # Li3 # Las. In the case that
M, N M, is a line L4 we assume it is not in the plane (L1a, L23); otherwise,
of course, My N M, is empty.

Then the four sets {H; = Np(M;)||i = 1,...,4} are independent in the
sense of section 2.

Proof: The condition L1 # L3 # L3y means the triplets {H, Hy, H3}
and {H,, H3, H,} are independent. It suffices to show that for every 3-set J
of the index set I = {1,2,3,4}, there is a point of D in the intersection of
the H; for 1+ € J which is not in Hy where {k} = I — J. So, in turn, it suffices
to prove the “twisted dual” version of this last assertion, namely:
(4.4) Let X = {z,,...,z4} be a set of four points of D which either (i) form
a 4-clique generating a PG(3), or (ii) yield the induced collinearity

subgraph s

1 T4
T3

with (z;,22,z3) and (23, za,z4) planes. Then for any 3-subset X, =
{zi,z;,zs} of X, there exists a maximal singular subspace M, of M'(D),
such that Np(M,) N X = X,.
To prove (4.4), we first embed D in the canonical way in a half-spin geometry
E of type D, 41 n+1 where n+1 = 2m + 2 is even. The word “canonical” here
means that the embedding D — E (which we regard as an inclusion) is such
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that D belongs to D,(E). Now as previously noted, E is a member of Emyq
satisfying axioms (E1)-(E3). By Lemma 3.3, the sets A (z;) are independent,
so, for any 3-subset J = {1,7,k} of I, there is a point u; in E such that
(4.5) A:n(u]) NX=X;:= {:Ds”S € J}

Since u; has distance m + 1 from one member of X, u; cannot be in the
subgeometry D for the point-collinearity graph of D has diameter m. Now,
setting u¥ N D = M; € M'(D), (4.1) and (4.5) yield

Np(M;)n X = X;.

Thus M; meets the requirements of M in the conclusion of (4.4). This
completes the proof.

We now begin the proof of Theorem 3, that Veldkamp planes exist
for the half-spin geometries. By Lemma 3.2, it suffices to show that for any
three hyperplanes A,, A; and Aj of a half-spin geometry E of type D,, ., the
collinearity graph induced on the set

Z'—:AlnAz—AlnAznA;;

is connected. By Corollary 3.2, this is true if n = 4, since geometries of type
D44 are polar spaces of rank 4. By way of contradiction we assume n > 4
chosen minimally so that Z is not connected, and choose z and y in distinct
connected components of Z so that their mutual distance dg(z,y) in E is
minimal, Then
(4.8) (i) dg(z,y) = m = diam(E), E = (z,y)g € &En, forcing n = 2m to be
even.
(ii) There is no point z in Z whose distance from both z and y is less
than m.
First choose D in D,,_;(E) on point y, and let D’ be a subgeometry of D,,.1(E)
which is opposite D and lying on point z (one exists). Now, since D and D’
are of type D,,_1,-1 where n — 1 > 5, they must have singular rank at least
5. In fact, if M is chosen in M'(D') so that it lies on z, then 4, N A, N M
has codimension at most 2 in M, a PG(n — 1), and so it is at least a plane
and contains A; N A; N A3 N M as a proper subspace. Thus there is a choice
of three points z;, z; and z3 in

ANANM-ANANANM=2ZNM

spanning a plane m of M. Let L be the line on z, and z3. We set M = M,
7 =, and let M, be a second maximal singular subspace of M'(D’) on line
L. We can then find a fourth point z, in Z N M, so that (z,,3,z,) is a plane
w2 in M,. We have M; N M, = L and at this point there are two possibilities:
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(4.7) (i) (1, z2,23,z4) is isomorphic to a PG(3) or
(ii) the collinearity graph on X =zz{:c1, Ty, T3, T4} 18

Z T4

Then setting M; = z} N D, wezssee from Lemma 4.1 that the sets
H;:= Np(M;),1=1,2,3,4, are independent hyperplanes of D.

On the other hand, if 2 is any point of Z N D', then dg(z,2) < m — 1,
since D' is convex in E and has point-diameter m — 1. By the minimality of
n, z lies in the same connected component of Z as does z. Then z can be
placed in the role of z in (4.6)(ii) to force the fact that no point of Z can lie
in Ay, _,(2) N A},_;(y). This means A},_,(z)N DN Z = 0 so by (4.1)

(4.8) Np(M;)Nn A1 N A; C A,.

Now, because y € DN Z, A3N D does not contain A; N A,N D - that is,

A3ND does not depend on A;ND and 4,ND. Since, by induction, Veldkamp
planes exist for D (minimality of n), an exchange axiom for 3-sets holds for
hyperplanes of D. Thus (4.8) and the fact that 43 N D does not depend on
{41 N D, A, N D}, yields
(4.9) A1NA;N A3N D C Np(M,).
We now apply (4.9) to z = z;, ¢ = 1,2,3,4. This produces the result that
each of the hyperplanes H; := Np(M;) of D depends on the set of three
hyperplanes, {A; N D||i = 1,2,3}. Since Veldkamp planes exist for D, we see
that this implies that the four hyperplanes H,,..., Hy are dependent. This
contradicts the conclusion that the H; are independent obtained above. The
proof is complete.

We prove now Corollary 1.4. We have three facts at hand. (i) All geo-
metric hyperplanes of the half-spin geometries arise from their embedding in
the half-spin module ( [3]). (ii) The pure spinor 1-spaces are the embedded
points of the half-spin geometry in the half-spin module. (iii) Veldkamp planes
exist for the half-spin geometries. The Corollary now follows from these three
facts and Lemma 3.3.
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The Lyons group has no
distance-transitive representation

L. H. Soicher

Abstract
We show that the Lyons group Ly has no distance-transitive represen-

tation, and that the only faithful multiplicity-free permutation repre-
sentations of Ly are those on the cosets of G4(5) and of 3-McL:2.

One area which is still open in the classification of primitive distance-
transitive graphs is the determination of the primitive distance-transitive rep-
resentations of certain sporadic simple groups and their automorphism groups
(see [1]). In this note we show that the Lyons group Ly & Aut(Ly) has no
distance-transitive representation. In the process, we find that the only faith-
ful multiplicity-free permutation representations of Ly are those on the cosets

of G3(5) and of 3 McL:2.

Let G be a permutation group on a finite set §2, and I’ a connected graph
with vertex set Q. (Throughout this note all graphs are undirected, with no
loops and no multiple edges.) We say that G acts distance-transitively on T
if for each ¢ = 0,...,diam(T"), G is transitive on the set of ordered pairs of
vertices at distance ¢ in I'. The graph T is called distance-transitive if Aut(T")
acts distance-transitively on I'. A distance-transitive representation (DTR)

p: X — Sym(Q)

of a group X is a faithful permutation representation such that p(X) acts
distance-transitively on some connected graph with vertex set .

Let X be a finite group, and p : X — Sym(Q) a DTR. It is well-known
that p must be multiplicity-free, that is, the sum of distinct (complex) irre-
ducible representations of X (in fact these distinct representations must be
real (see [1]), but it seems worthwhile to classify all multiplicity-free permu-
tation representations of Ly). Thus, || < Dy, where Dy is defined to be the
sum of the degrees of the irreducible representations of X. From the character
table of Ly (see [2] or [3, 4]), we have that

Dy, =1297168312.
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From R.A. Wilson’s classification [7, 8] of the maximal subgroups of Ly, we see
that the only proper subgroups of index < Dy, are G(5), 3: McL: 2, 53 Ly(5),
and 2'A;;. (We use ATLAS notation [2] throughout for group structures and
conjugacy classes.)

Proposition 1 Let H = 5% L3(5) or 2 A1y, and p be the permutation repre-
sentation of Ly acting on the (right) cosets of H. Then p is not multiplicity-
free.

Proof. We make use of the rational character table of Ly, supplied in com-
puter form by the GAP 3.1 group theory system [6].

Let 7 be the character of p, and o the sum of the irreducible characters
of Ly. We suppose that m is the sum of distinct irreducible characters and
find a contradiction by examining the possibilities for & — 7, which must be
a rational character not having the trivial character as a constituent.

Suppose H = 2-A;q, and let k = o(1) — n(1) = 341437. A very easy
computer search, using a PASCAL program, shows that there is no sum 7 of
nontrivial distinct irreducible characters of Ly, such that 7(1) = k and 7 is a
rational character.

Now suppose H = 5% Ly(5), and let k = o(1) — m(1) = 183938656.
Using the same PASCAL program, and about three minutes of CPU-time
on a SUN Sparcstation 2, we have that there are exactly 2325 sums 7 of
nontrivial distinct irreducible characters of Ly, such that 7(1) = k and 7 is a
rational character, but for each such sum 7 we find that o — 7 has a negative
value on some element of Ly, and so cannot be the permutation character .

O

We are now left to consider the permutation character = of Ly on the
cosets of H, where H = G,(5) or H = 3 McL:2. In each case, 7 is the
sum of just five distinct characters of irreducible real representations (see [2]
or [3, 4]). We shall show in each case that the permutation representation
corresponding to 7 is not a DTR.

Lemma 2 Let G be a permutation group on a finite set 0, w € 2, and
Qo, ..., the distinct orbits of the point stabilizer G, on §). Suppose that
G* < G acts primitively on Q* = w®’, and that G*, has exactly d + 1 distinct
orbits Q, ..., on Q*, such that Q C Q; for:=0,...,d.

If G acts distance-transitively on a connected graph T' with vertex set
Q, then G* acts distance-transitively on the graph I'* induced by I' on 2*.

Proof. If G acts distance-transitively on I, then without loss of generality
we may assume that the §); are ordered so that §; = I';(w), the set of vertices
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at distance ¢ from w. Since G* acts primitively on I'*, we see that I'* is
connected and that Q! = I'f(w). The result follows. o

Proposition 3 The permutation representation of G = Ly on the cosets of
H = G5(5) is not a DTR.

Proof Let t be a 3A-element of H, G* = Ng(t) & 3McL:2, w = H,
= {Hg|g € G}, and Q* = {Hg|g € G*}. Now G, = 3U3(5) 2 has

nontrivial orbits of lengths
252, 750, 2625, 3500

on * (see [5]), and so the corresponding two point stabilizers A, B, C, D have

respective orders
3000, 1008, 288, 216.

The two point stabilizers corresponding to the nontrivial orbits of H on
1 are of shapes

5_1‘_+4:4.S4, U3(3), 2(A5 X A4).2, (3 X L2(7)) 2

(see [2] or [3, 4]). Since 5% divides | A|, we see that the only possible inclusion
for A in such a two point stabilizer is A < 51**:4.5,. We also see that B =
(3% L(7)): 2, the only possible inclusion for C is C < 2.(As x A4).2 (Us(3) has
no subgroup of order 288), and the only possible inclusion for D is D < Us(3)
(since 33 divides | D).

Now suppose that the representation of G acting on 2 is a DTR. The
action of G* on 0* is the primitive action of McL:2 on the cosets of U3(5): 2,
and so by the preceding discussion and Lemma 2, it follows that the repre-
sentation of McL:2 on the cosets of U3(5): 2 is a DTR. However, this is not
the case (see [5]), and this contradiction establishes the result. O

Proposition 4 The permutation representation of G = Ly on the cosets of
H =3 McL:2 is not a DTR.

Proof. We identify the cosets of H with the 3 A-generated subgroups of
order 3 of G. Let w = O3(H), and 2 = w®. Now H has just four nontrivial
orbits on 2, which can each be characterised by the group

3%, 2 Ay, 2'4s, or 5123, (%)

generated by w and an element of that orbit (see (3, 4]).
Now let o € Q, such that (o,w) = 3%, and G* = Ng(a) = 3 McL:2.
Then Q* = w® is a conjugacy class (of size 15400) of subgroups of G*. Now
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G* acts on §2* as the primitive action of M cL: 2 on its 3A-generated subgroups
of order 3, and this action is rank 5 (see [5]). In McL, each of the groups in
the list (*) can be generated by a pair of 3A-elements (this can be seen in
2'Ag and 5}%%:3:8), and so this is also true for G*.

We may now apply the preceding discussion and Lemma 2 to assert that
if the representation of G on 2 is a DTR, then so must be the representation
of McL:2 on its 3A-generated subgroups of order 3. However, from [5] we
know that the latter representation is not a DTR. O
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Intersection of arcs and normal
rational curves in spaces of odd
characteristic

L. Storme * T. Szényi

Abstract

We study arcs K in PG(n,q), n > 3, ¢ odd, having many points
common with a given normal rational curve L. In particular, we show
that, if 0.09¢ + 2.09 > n > 3, q large, then (g + 1)/2 is the largest
possible number of points of K on L, improving on the bound given in
[11], [12], [14]. When |K N L] = (g + 1)/2, we show that the points of
K N L are invariant under a cyclic linear collineation of order (¢£1)/2.
The corresponding questions for ¢ even are discussed in [13].

1. Introduction

Let ¥ = PG(n,q) denote the n-dimensional projective space over the field
GF(q). A k-arcin &, with ¥ > n + 1, is a set K of k points such that no
n+ 1 points of K belong to a hyperplane of . A point r of PG(n, q) extends
a k-arc K, in PG(n, q), to a (k+ 1)-arc if and only if KU {r} isa (k+ 1)-arc.
A k-arc K of PG(n,q) is complete if and only if K is not contained in a
(k + 1)-arc of PG(n, q). Otherwise, K is called incomplete.

A normal rational curve K of PG(n,q),2 <n < ¢—2,is a (¢ +1)-
arc which is projectively equivalent to the set L = {(1,¢,...,t")||t € GF(q)*}
(GF(g)* = GF(q)U{oo}; oo defines the point (0,...,0,1)). More information
about arcs and normal rational curves can be found in [2, Chap. 21] and (3,
Chap. 27]. In PG(2,q), L = {(1,t,t%)||t € GF(g)*} is the conic C : X? =
XoX,. This (g+1)-arc is complete when g is odd. A normal rational curve of
PG(3, ¢) is also called a twisted cubic. For results concerning the completeness
of normal rational curves we refer to [11], [12], [14].

Given a conic C and a point r & C, it is easy to construct k-arcs con-
taining approximately half the points of C by choosing one of the two points
of C on each secant line passing through r. This construction, sometimes
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called the Segre construction, has been studied by several authors. The diffi-
culty is to prove the completeness of the arcs, and various methods such as
group theory, algebraic geometry and elementary field theory have been used
51, 9]

For more details about the history of the problem we consider, the
reader is referred to [13]. Here we only repeat the main problems:

(1) Consider a (k + 1)-arc of PG(n, q), 2 < n < g — 2, which has k points
in common with a given normal rational curve. What is the maximum value
of k for which this occurs?

(2) Consider a normal rational curve L in PG(n,gq). Fix a point r of
PG(n,q)\L. Characterize the largest k-arcs K, contained in L, such that
K U {r} is a (k + 1)-arc and investigate the completeness of K U {r}.

For problem (1), there is an easy bound for the cardinality of K N L
[11], obtained by induction on n, namely

KL< (g +3)+ (n—2) 1)

Our results improve this bound and, as for g even, we would like to stress
that our bound is independent of the dimension n; namely we show that

1
[KNLI<Z(g+1) if 3<n<0.09g+200.

Moreover our bound is attained and we can characterize the arcs K for which
|K N L| is maximal. We show that the points of K N L are invariant under a
cyclic linear collineation of order (g £ 1)/2. This key observation allowed us
to use induction on the dimension n without having to increase the bound
simultaneously with the dimension when 3 < n < 0.09g + 2.09. This is done
in Section 4.

The method applied is based on a careful inspection of arcs and normal
rational curves in three dimensions. Let » € K\ L. Projecting the arc K from
r we get a subset of a rational plane cubic curve, which allows us to translate
everything to the language of abelian groups using 3-independent subsets.
Section 2 is devoted to the study of 3-independent subsets in abelian groups,
while in Section 3 we characterize the arcs K in PG(3,q) having (¢ + 1)/2
points on a normal rational curve.

Historically, there was another source to our problem: coding theory.
Arcs are related to MDS codes, subsets of normal rational curves to (Gener-
alized Doubly Extended) Reed—Solomon (GD)RS codes. MDS extensions of
GDRS codes were studied by Seroussi and Roth [11]. The bound (1), together
with an improvement for ¢ even, is due to them. Later on, Roth and Lempel
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[10] used a normal rational curve and a point lying on a tangent of it to con-
struct long non-Reed-Solomon type MDS codes. Their construction is based
on subgroups of index two in the group (GF(g), +), g even; so it is one case in
the characterization in [13]. For more on the coding theoretic background and
the connection of normal rational curves with MDS codes and with GDRS
codes, we refer to [7], [10], [11].

2. The group problem

We study 3-independent subsets of cyclic and elementary abelian groups. The
following results and remarks show how these abelian groups are used in the
study of arcs. This section is based on Theorems 2.1 to 2.6 of [13] where all the
necessary statements and theorems are proved in detail. We restrict ourselves
to a survey of the results that will be used in the subsequent sections.

Consider a twisted cubic L in PG(3,q). A chord to L is either a tan-
gent line to L, a (real) bisecant to L through 2 different points of L in
PG(3,q) or a (imaginary) bisecant to L through 2 conjugate points of L in
PG(3,¢*)\PG(3, q). Every point of PG(3,¢)\L belongs to exactly one chord
of L [2, p. 240]. Projecting L from a point r, r € L, one gets a rational cubic
curve A. By the tangent-chord law, one can define an abelian group G on its
non-singular points. This group is elementary abelian if r lies on a tangent
of L, cyclic of order ¢ — 1 if r is on a real bisecant, and cyclic of order g + 1
if r belongs to an imaginary bisecant of L. There is an element § in G such
that three non-singular points of A, with parameters z,y, z, are collinear if
andonlyifz+y+2z=26.

The following theorem, due to Kneser, plays a crucial role in the char-
acterization of our arcs in terms of abelian groups.

Theorem 2.1 (Kneser [8, p. 6]) Let A and B be finite subsets of an abelian
group G. There exists a subgroup H of G such that A+ B= A+ B+ H and
|A+B| 2 |A+ H|+|B+ H| - |H|.

As in [13], go always denotes the smallest integer ¢ for which (1 +
v3)r3(n) < 0.0ln,n > g — 1, where r3(n) is the maximum cardinality of a
subset A C N = {1,...,n} that contains no three-term arithmetic progres-
sion.

Definition 2.2 Let G be an abelian group and 6§ a fixed element of it. A
subset A of G is called a 3-independent subset of G with respect to § if and
only if z + y + 2 # 6 for all sets {z,y, 2} of pairwise distinct elements of A.
If 6§ = o, the identity of G, then we simply say that A is 3-independent.

361



STORME AND SZONYI: ARCS AND NORMAL RATIONAL CURVES ...

The concept of 3-independency is used for studying arcs K’ contained in a
plane rational cubic curve A. Let G be the abelian group defined on A and
S be the set of parameters of the non-singular points of K'. Let z,y,z be
three distinct parameters of S. Since the corresponding points of K’ are not
collinear, z + y + z # &, where 6 is defined in the beginning of Section 2. So,
S is a 3-independent subset with respect to 4.

Lemma 2.3 [13, Lemma 2.6] Let G be the cyclic group Cy_, or Cpy1 with q
odd, q > qo, and let A be a 3-independent subset with |A| > 0.41|G|. Then A
is contained in G\ H or H, according as § € H or not, where H is the unique
subgroup of index 2 of G. Furthermore, the cyclic group C,, q prime, q > qo,
contains no 3-independent subset A of size |A| > 0.41q.

Lemma 2.4 An elementary abelian group G = C}, p > 2, which contains a
non-trivial subgroup H for which |G/H| > 121 and |H| > 121, contains no
3-independent subsets T' of cardinality at least 0.41|G|.

Proof. Let G=C}, p> 2, and H < G. Define k = max,e¢ |T N (a + H)|
and fix an a with |TN(a+ H)| = k > 0.41|H|. Pair elements b,c € G/H and
fix their coset representatives in such a way that a + b+ ¢ = §. We call the
pairs {b, ¢} for which b = ¢ or @ € {b, ¢} the exceptional pairs since in these
cases &, b, € are not pairwise distinct.

Let T, = {t — z||t € T N (¢ + H)}. If the sets T}, T, are non-empty,
Theorem 2.1 gives us a subgroup K of H for which [T, +Ts| > |Ta| +|Ts| — | K.
As (T. + Ty) N (—T.) = @, we have

1+
ITal + T3] + |T.| < |H| + K| < |H—Z2.

(2)
From now on, let p > 5.

Part 1. k < |H|(1 + p)/(2p).

In this case, we have, from (2), that for all b,c, witha+b+c=§
and &, b, ¢ pairwise distinct, including those for which T, = @ or T, = @, that
(T3l +IT2) < | H|(1+p)/p—F. Hence |T| < 3k-+(1G/ H-3)(| H|(1+)/p—k)/2.
The right hand side is linear in k and reaches its maximum at k = 0.41|H|,
hence |T'| < 0.045|H| + 0.395|G|, which is false if |G/H| > 11.

Part 2. |H|(p+1)/(2p) <k < 2|H|(p+1)/(3p).  _

In this case, for all b, ¢ for which T} # @ # T. and &, b, € distinct, from
(2), |Ts| + |Te| < |H|(p + 1)/p — k < k. This upper bound is also valid if
T, = @Qor T. = @. It is easy to check that ((§ —2a)+ H)NT = @ and
I((6 —a)/2+ H)YNT| < (|H| +1)/2 if § # 3a. Using this we get |T| <
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(|G/H| - 3)k/2 + k+ (|H| +1)/2 < 0.4|G| + 0.1|H| + 1/2, which is smaller
than 0.41|G| if |G : H| > 121.

Part 3. 2|H|(p+1)/(3p) < k < |H|.

Let a and B be the number of cosets of H with |(a' + H)NT| >
(|H|+5)/2 and (|H|+3)/2> |(a'+ H)NT| > |H|(1 + p)/p — k. Let A and
B be the set of representatives of the cosets of H corresponding to a and
B. Then § ¢ (AU B) + A + A; hence, as with (2), by Theorem 2.1, we get
3a+ B < |G/H|(1+p)/p.

Let b+ H be a coset in AUB and c+ H its paired coset, i.e.,a+b+c = 6.
If b does not belong to an exceptional pair, (c + H)N T = @, whence we get
a+ B <(|G/H|+1)/2 and there are at least & + 8 — 1 cosets having empty
intersection with 7.

Therefore |T| < ak+B(|H|+3)/2+(|G/H|-2a—26+1)(|H|(1+p)/p—k)
where a > 1,8 > 0,a+ 8 < (IG/H| +1)/2,3a + 8 < |G/HI(L + p)/p.
Therefore the right hand side reaches its extremum at one of the follow-
ing points: (2, 8) = (1,0),(1G/HI(L + )/(3),0), (1, (|G/H| — 1)/2) and
(IG/H|(p + 2)/(4p) — 1/4,|G/H|(p — 2)/(4p) + 3/4). This extremum is al-
ways smaller than 0.41|G|. For instance, if (a,8) = (|G/H|(p + 1)/(3p),0),
then we have |T'| < a|H|(p+1)/p < 0.4|G|if p > 11 since |G/H|—2a+1 < a.
Similarly, if (a,8) = (1,0), then |T| < 4|G|/11 + |H|(p — 1)/p < 0.41|G| if
p>11 and |G/H| > 121.

Part 4. The values p = 3,5 and 7 are treated separately. Since the case
p = 5 is proved in the same way as p = 7, this case is omitted.

(1)p=383: Let H < G with |G : H| = 3. Select H such that § € H. Let
T;=TN(E+H),:=0,1,2. For all 1, |T;| < (JH| + 5)/2, otherwise § can be
written as the sum of 3 distinct elements of T;. This can be proved by using
the method described in [11] and (14, Lemma 20]. Hence T; # @, 1 = 0,1,2
or else |T| < |H|+ 5 < 0.41|G|.

Now 6§ ¢ To+T1+ T2 0or 6—(to+t1+1t2) € Tg+T, + T, where t; € T; and
T: = T! + t;. From (2), |Ty| + |T4| + |T,| < |K| + |H]| for a subgroup K < H.
If |K| < |H|/9, then |T| < 10|H|/9 < 0.41|G| which is false.

So |K| = |H|/3 and |Tg+ K|+ |T{ + K| +|T; + K| < 4|H|/3. Moreover
equality must hold, or else |T'| < |H| < 0.41|G|. So for some 1, |T} + K| =
2|H|/3 and |T}| < (|H| + 5)/2. Equivalently, |T'| < (|H| + 5)/2 + 2|H|/3 <
0.41|G).

(2)p =7: We can assume that § = 0. Select H < G with |G: H| = 7, let
T;=TN(H+1),1=0,...,6, let £ = max|T;|. Since Parts 1 and 2 are true
for p =7, assume k > 16|H|/21. But [T N H| < (|H| + 5)/2, so suppose that
k = |Ti|. Then T_, = @. Consider the pairs {Ty, T-1}, {12, T-3}, {Ts}-
KTy# @, then (T3 + TB)N(-Th) = @ with T3 + T3 = {z + y||z,y €
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T3,z # y}. So |T3| < |H| — k. This is also true if T3 = @.
Case 1. To,T_1,T>,T-3 # Q. Then, from (2), |To| + |T1| + |T-1| < 8|H|/7 and
|To| + |T1| + |T-3| < 8|H|/7. So |T| < 16|H|/7 — k + |H| — k < 0.41|G]|.
Case 2. Exactly one coset T; = @,7 = 0,1, 2, —3. For instance Tp = @. Then
|T| <8|H|/7 + |T-1| + |T5| < 15|H|/7 < 0.41|G]|.
Case 3. For at least one 7 € {0,—1} and j € {2,-3}, T; = T; = @; for
instance To =T, = @. Then T =Ty UT3 UT, U T and |Ty| + |T3| < |H|. No
other coset T, = @, r = —1,-3. Since 0 ¢ (T + T4) + Te, from [15], either
|T4| < |H|/7 or |Ty| < (|H| — |T6|)2/3. Both cases imply |T| < 0.41|G|. O
To sum up the geometric meaning of the results of this section, we can
formulate the following theorem.

Theorem 2.5 Let L be a twisted cubic, K be an arc of PG(3,q) such that
K\L = {r}. Suppose that [K N L| > 0.41(g+ 1)+ 1 and g > go. Then r lies
on a bisecant M of L and there are at most two arcs K' O K with |[K'\L| =1
intersecting L in exactly (¢ +1)/2 points. The arc K' is unique if r lies on an
imaginary bisecant, and K'\(M N L) is unique if r lies on a real bisecant.

Proof. Projecting L from r we get a rational plane cubic curve A. The
projection of K minus possibly the singular point of A, considered as a sub-
set of the abelian group G defined on the non-singular points of A, is a 3-
independent subset with respect to some § € G (see 2.2). At most one point
of K N L is projected onto the singular point of A, so this 3-independent
subset has at least size 0.41|G|.

If r belongs to a tangent to L, then G is isomorphic to (GF(q),+).
But this group has no 3-independent subsets of size greater than or equal
to 0.41|G| (Lemmas 2.3 and 2.4). This means that r belongs to a real or
imaginary bisecant M to L and G is isomorphic to the cyclic group C,_,
or Cyy1. Therefore, by Lemma 2.3, we find a subgroup H of size |G|/2 with
the property that either H or G\H contains the non-singular points of the
projection of K. Suppose H contains the non-singular points of the projection
of K; the case G\ H is treated in a similar way. From Lemma 2.3, § ¢ H.
So no three points of H add up to §. Hence these points of H define an arc
in the plane which contains A. Let K; be the set of points of L which are
projected onto the points of H. Then K, U{r} is a (|G| + 1)-arc of PG(3, q).

If r belongs to an imaginary bisecant, then K' = K; U {r}. If r belongs
to a real bisecant M, we can add one of the 2 points of LN M to K; U {r}.
This then gives a (g + 3)-arc K’ and K'\ (M N L) is uniquely defined. O

The previous theorem shows that K N L is essentially unique but there
might be points outside L that extend the arc K. This possibility will be
investigated in the second part of the next section.
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3. Three dimensions

In this section we study in detail (k+1)-arcs K of PG(3, g), ¢ > o, containing
k points of the twisted cubic L. As we remarked in Section 2, we can translate
the extendability of arcs, contained in L, by r (r ¢ L) into the language of
abelian groups. The structure of the abelian group depends on the type of
chord of L the point r belongs to.

Theorem 2.5 shows that it is enough to describe (g + 3)-arcs having
(g + 1)/2 points on L, since all the arcs K with k > 0.41(g + 1) + 1 are
embedded in such a big arc. These arcs correspond to subgroups of index 2
in the abelian group of the cubic curve A obtained by projecting L from r.
Another important ingredient of the proof is to show that these groups can
be interpreted as subgroups of the projective group PGL(2,q) of L. In the
next two sections we frequently use some properties of the linear collineation
group PGL(2,q) fixing a normal rational curve L in PG(n,q). The results
used here can be found in [2, Chap. 21.1] and [3, Chap. 27.5].

Let us first consider a point r on a real bisecant of L = {(1,t,t%,t?)||t €
GF(q)*}. As PGL(2, q) is 3-transitive on the points of L, we can assume that r
belongs to the bisecant through (1,0,0,0) and (0,0,0,1). Then r = (1,0,0, a),
a # 0. Three different points of L with parameters t;, 7 = 1,2, 3, are coplanar
with r if and only if

t1t2t3 —a=0. (3)

Of course, this also corresponds to the fact that in this case the pro-
jection of L is a cubic curve having an ordinary double point and its group
is isomorphic to the multiplicative group of the field GF(q). So, the unique
subgroup of index 2 of this group consists of the non-zero squares. Combining
this with Theorem 2.5 we immediately get the following theorem.

Theorem 3.1 Let r=(1,0,0,a), a # 0, be a point on a real bisecant of L, £
a fixed non-square and K = {(1,¢,1%,¢*)||t = lau?, u € GF(q)}U{r}. Then,

(i) there are precisely two (g + 3)-arcs containing r and (g + 1)/2 points of
L, namely the arcs K and (K\{(1,0,0,0)}) U {(0,0,0,1)}.

(ii) Moreover, precisely (g — 1)/2 points (1,0,0,b), b/a is a non-zero square,
extend the arc K\{r} C L.

(iii) Finally, K\{(1,0,0,0),r}, which is contained in both arcs mentioned in
(1), is an orbit of a cyclic subgroup H, of order (¢ — 1)/2, of PGL(2,q).

Proof. By the remarks before the theorem we only have to prove (ii) and
(iii). Part (ii) follows immediately from (3), namely the points of the form
(1,0,0,b) that extend the arc K\{r} C L are precisely the points with b/a a
square and Part (iii) is also clear as the subgroup H consists of the mappings
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t > v’t where v runs over the non-zero elements of GF(q). i

Later on we will show that there are no other points outside L extending
K\{r} than the ones mentioned in (ii). In particular, this will imply that K
is complete.

Let us turn to points belonging to imaginary bisecants. So, again let
L = {(1,¢,t%,t%) || t € GF(q)*}. As we also use elements of GF(g?), let us
generate this field by an element 7 that satisfies 42 = £, where £ is a fixed non-
square in GF(q). An imaginary bisecant is defined by two conjugate points
of L with parameters w,w? = @ in GF(¢?)\GF(g). If w = a + &, then the
transformation ¢ + (¢ — a)/b maps w onto 2 and @ onto —1i. Therefore we can
suppose that our imaginary bisecant M is the line joining the points (1,1, ¢, ¢1)
and (1,—1,4,—£). It is worthwhile to mention that we shall frequently use
the fact that an imaginary bisecant can be mapped onto this M using an
element of PGL(2, q) fixing the point with parameter oc.

Theorem 3.2 Let r be a point on the imaginary bisecant M joining (1,1, ¢, &)
€ L and (1,—%,¢,—&i) € L.

(i) Then there is a unique 3(q + 1)-arc on L that can be extended by r to a
(g + 3)-arc, and it is an orbit O under a cyclic subgroup H of PGL(2,q) of
order (g +1)/2. The group H fixes (1,1,£,4) and (1, —1,¢, —&).

(i) The orbit mentioned in (1) or its complement consists of the points with
parameters in {(1 + £¢?)/(2t)||t € GF(q)*}.

(iii) There are exactly (g + 1)/2 points on M that extend the arc O C L and
the same applies for L\O.

Proof. We know from Theorem 2.5 that the 2(g + 1)-arc on L mentioned
in this theorem is unique. So, we will consider an orbit of a cyclic group of
order (¢ + 1)/2 and show that a certain point of M can be added to it to
obtain a 1(q + 3)-arc.

First, let us consider the transformation 8 : ¢t — (¢ —1)/(t +2). This
maps the points of L with parameter 7 onto 0, —z to o0, and oo onto 1. A
point on the bisecant joining (1,%,4,£) and (1, —1,¢,—¢:) is mapped onto a
point (1,0,0,a) with a € GF(q?). Now B can be extended to a collineation of
PG(3,q?) [2, p. 233], namely to

v i 3 3 1 o

| n b -4 1 1 7
B: vy Tl -t -1 v,
V3 —id 3¢ -3 1 v3

Then B maps 11 = (1,7,£,4) to (84£,0,0,0) and 2, = (1,—1,4, ) to
(0,0,0,—8i¢). A point of PG(3, g) on the line joining 7, and 2, can be written
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as ai; + @iz, so B maps this point onto the point ¢ = (a, 0,0, —&). Now this
point is linearly dependent on 3 different points of L with parameters t,,1,,13
over GF(g?) if and only if

atityts + @ =0, i.e., tityty = —a?™l. (4)

We are going to show that a suitable orbit of a cyclic group of order
(g + 1)/2, together with a, forms an arc; then applying B~! we show that
the inverse images of the points of that orbit are points of PG(3, q) because
originally we only know that the coordinates belong to GF(g?).

Let us start by proving that from a point with parameter z € GF(g?)
satisfying 29*! = 1 we get a point of PG(3,q) applying B~!. If we apply
B~! on the points of L we just have to apply 87!, which is the mapping
t == (—it —1)/(t — 1). The elements satisfying 2%*! = 1 can be written as
z = w*91) for some k, where w is a primitive element of GF(g?). We have
to show that 871(z) € GF(q)", that is 87(z) = B~!(z), when z # 1. This
is equivalent to (ww)*2~1) = 1; but that is obvious since ww = w*! and
w? =1 = 1. Now we see that the parameters of the points of the cyclic orbits
should be subsets of the elements satisfying 297! = 1. Indeed, the two orbits
are O; = {(1,2,2%,2%)||29*1)/2 = 1} and O, = {(1, 2, 2%, 2%)||209*1)/% = —1}.

We now show that for any a, O; U {a} is an arc for 7 = 1 or 2. First of
all recall the condition of linear independence for the point a with respect to
points of O;. Condition (4) tells us that this is ;2,63 # —a®"!. Notice that
(—a?~1)@+1)/2 i +1. If this is —1 then we can add a to O, since raising (4)
to the power (¢ + 1)/2 we get +1 on the left hand side and —1 on the right
hand side. Similarly, if (—a?=1)(4+1)/2 = 11 then we can add a to O, and we
get an arc.

Finally, let us remark that the cyclic transformation of order (g + 1)/2
that maps B~1(0,) into itself is indeed an element of PGL(2, q) as it maps
four points of PG(3,q) to four points of PG(3, ). This completes the proof
of (i).

To prove (ii), let us parametrize O; in another way. The elements for
which z(#*1/2 = 1 can also be written as z = (1 4 t3)%9" ) or z = %Y =
2271 = 1. We also obtain z = 1 when we substitute t = 0 in z = (1 + tz)2(a~1);
so we only consider z = (1 + ti)%¢~1), Easy computation shows that

1+ 6828 + t40% — 4t — 44324
1 — 2412 4 442

(1 + ti)z(q_l) =

The arc which is extendable by a point of M can be obtained from O, by
applying B~!. So the parameters of the arc are obtained by 7. Putting the
right hand side of the preceding equation into B7': t v (—ti —1)/(t — 1),
gives (1 + £t2)/(2t). This proves (ii).
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Concerning (iii) recall that the points of M have the form a(1,1%, £, &)+
a(l,—1,¢,—4) and we could add such a point to O, or O, according as

(—a®)at)/2 = _1or 41.

Obviously, any one of these two equations has exactly (g + 1)/2 solutions in
@, which proves (iii). O

Remark 3.3 In the parametric form (1 + £t)/(2t), we get the same value
for t and (£t)71,if t # 0, and for t = 0 and ¢ = oo.

The following three theorems, with a corollary, will be the cornerstones
of the induction argument of Section 4. They are also very useful for investi-
gating the completeness of the arcs constructed in Theorems 3.1 and 3.2.

Theorem 3.4 Consider the set of non-zero squares K. Suppose that there is
a transformation -y : t + (at+b)/(ct +d), ad—bc # 0, for which |KNy(K)| >
(¢+3./9)/4. Then v is one of the mappings t — v?/t ort v v, v # 0, which
fix K.

Proof. We have to estimate the number of solutions to the equation

, au’+b

T+ d

ad — bc £ 0.

Instead of the quotient of the two expressions on the right hand side we can
consider their product since the product of two elements is a square if and
only if their quotient is square. So we consider

v? = (au® + b)(cu® + d), ad — bc #£ 0.

For this equation we can apply [6, Theorem 5.41], which shows that

Z w((au’® + b)(cu?® + d))| < 3/9,
»€GF(q)

where w denotes the quadratic character; that is w(z) = +1 if z is a square,
—11if z is a non-square and w(0) = 0. In other words, the number of elements
u of GF(q) for which (au® + b)(cu®? + d) is a non-zero square, is at most
(g + 3,/9)/2 if the polynomial (au?® + b)(cu® + d) is not a constant times the
square of another polynomial. In this case, as u and —u, u # 0, give the same
value v? one sees that the number of non-zero squares that can be obtained
as (au? + b)(cu® + d) is at most (g + 3./7)/4.
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The excluded case, when (au? + b)(cu® + d) is a constant times the
square of another polynomial, implies that au? + b and cu? + d are both a
constant times squares of other polynomials or au? + b is a constant multiple
of cu? + d. The second possibility contradicts ad — bc # 0, while the first
possibility implies that ab = 0 and cd = 0, and that clearly implies that v is
either a mapping t + v?/t or t +» v2t. O

Theorem 3.5 Consider the set O of points of L that have parameters (1 +
£t?)/(2t) where £ is a fixed non-square and t runs over GF(q)*. Apply a
transformation y:t+—> at + b, a # 0, a,b € GF(q), on O. Then, if a # +1 or
b#0,
4-2 442
2N CJonyo) < LEEERA

Proof. If (a,b) =(1,0) or (a,b) = (—1,0), then v fixes {3, —i} with % = £.
Since the cyclic group of order (¢+1)/2 which fixes O is uniquely determined
by {2, —1} (see the proof of 3.2), v(O) = O or 4(0) = GF(g)* \ O.

The parameters (1+£t?)/(2t) are mapped by «y onto (a+aft?+2bt)/(2t).
If a parameter belongs to a point of O N (), then

2 2
1+o ot alt” + 2bt, ie., t+20tv? = alvt® + 2btv + av.
2v 2t
This is the equation of a cubic curve I' : X Z% 4+ £XY? — afX?Y —2bXY Z —
aY Z? = 0 which is absolutely irreducible and so we can apply the Hasse-Weil
bound [1, p. 228). This givesq+1—2,/g< [T| <g+1+ 2,/

Now we show that any point of the intersection O N v(O) yields 4
points of T'. First of all, as we saw in Remark 3.3, for any v there is a unique
element v; = (fv)™! that satisfies (1 + fv?)/(2v) = (1 + &v?)/(2v,). Similarly,
for any t there is a unique ¢; = (#)~! for which (a + aft? + 2bt)/(2t) =
(a+ aft? +2bt,)/(2t,), since this is obtained by applying 7 to (1 + ££%)/(2t) =
(1 + £t3)/(2t,). One of the solutions is (z,y) = (0,0) which is counted once.
Therefore |O Ny(O)| < (|T| —1)/4 + 1, which completes the proof. o

Corollary 3.6 Let O, and O, be orbits of different cyclic subgroups H; and
H, of order (¢+1)/2 or (¢g—1)/2 in PGL(2, q). Then |01NO,| < (¢+3,/7)/4.

Proof. (i) Suppose that |O;] = |0, = (¢ + 1)/2. As PGL(2,q) is 3-
transitive on L [2, p. 234], we can suppose that O; is just the orbit O of
points with parameters (1 + £¢2)/(2t), t € GF(q)*. Then the other orbit O,
or its complement, can be obtained from O using a transformation of the
form 7 : t v at + b. Indeed, O, is determined by a pair of conjugate points
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{w = b+ai,w = b— ai} while O is determined by the pair of conjugate points
{i,—4}. If we use this a and b to define ~, then we indeed get an orbit be-
longing to the subgroup fixing {w,w}. Now the corollary follows immediately
from Theorem 3.5.
(i1) Suppose O; and O, are orbits of cyclic subgroups H; and H, which fix 2
points of L in PG(3, q). Using a transformation 7 : ¢t + (at + b)/(ct + d), ad —
bc # 0, we can map the fixed points of H; onto the fixed points of H, and
7(01) is O, or the second orbit of size (¢ — 1)/2 of H; on L. From Theorem
3.4,10:1N O,| < (g +3/9)/4 =
Similarly, we can bound the intersection of an orbit of a cyclic group
of size (¢ — 1)/2 and (g + 1)/2. Again, these two orbits, of different type,
intersect in roughly halve their points.

Theorem 3.7 Let O, be an orbit of a cyclic subgroup of order (¢g—1)/2 and
O, be an orbit of a cyclic subgroup of order (g + 1)/2 of PGL(2,q). Then
|01 N O, < (9+3,/9)/4.

Proof. As PGL(2,q) is 3-transitive on L, we can suppose that O, consists
of the points of L having square non-zero parameters. As in the proof of
Corollary 3.6, O, or its complement is obtained from the orbit O consisting of
the points with parameters (1+£t?)/(2t) using a transformation y : t — at+b.
The points of v(O) have parameters (a + aft? + 2bt)/(2t) (cf. the proof of
Theorem 3.5). Therefore we have to estimate the number of solutions to

a+ alt? + 2bt
'll.2 = —2?__1 (5)

with u # 0. As in the proof of Theorem 3.4, this can be replaced by u? =
(a+ aft® +2bt) - 2t, and then we can use [6, Theorem 5.41]. The expression on
the right hand side is a constant multiple of a square of another polynomial
if and only if @ = 0, but that is impossible.

So | E.eQFgw((a+ alt? + 2bt)2t)| < 3,/q where w is the quadratic
character defined in the proof of 3.4. For at most (¢ + 3,/g)/2 values ¢ in
GF(q) is (a + aft? + 2bt)2t a non-zero square. Again four pairs (¢, u) give the
same equality (5); so continuing as in the proof of 3.5 implies our theorem. O

Using the last three theorems we can easily prove the completeness of
the arcs constructed in Theorems 3.1 and 3.2.

Theorem 3.8 Let M be a real or imaginary bisecant of the twisted cubic
L. Let O be an orbit of a cyclic subgroup of PGL(2,q) of order (g — 1)/2 or
(g + 1)/2 fixing the points of L N M. Then the arc O can only be extended
by some points of LU M.
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Proof. Suppose that a point s, s ¢ L, extends @. Then, by Theorem 2.5,
O is contained in a %(q + 1)-arc on L extendable by s, and s lies on a real
or imaginary bisecant M' of L. Theorems 3.1 and 3.2 show that O, with at
most one exception, is an orbit corresponding to the bisecant M'. As O is an
orbit with respect to M, we have two different orbits intersecting in at least
(g — 3)/2 points. On the other hand, Corollary 3.6 and Theorem 3.7 imply
that two different orbits intersect in at most (¢ + 3,/g)/4 points. This shows
that M = M’ . Now Theorems 3.1(ii) and 3.2(iii) tell us exactly which points
of M can be added to O. a

Let us conclude this section with a theorem about arcs intersecting the
twisted cubic L in at least 0.41(g +1) + 1 points. We formulate the results in
such a way that the proof also works in n dimensions.

Theorem 3.9 Let L be a twisted cubic in PG(3,q), godd, ¢ > go. Let K # L
be a complete arc with |[K N L| > 0.41(¢g + 1) + 1. Then

(1) |K\L| < 2 and the point(s) of K\L lie on a (real or imaginary) bisecant
M of L;
(2) IK 1Ll = (g £ 1)/2.

Proof. Let r € K \ L. By Theorem 2.5, r lies on a bisecant M to L and
(K \ M)N L is contained in an arc O of size (¢ + 1)/2. This follows from
Theorems 2.5, 3.1 and 3.2.

Suppose a point s, s # r and s € L, extends K N L. Then s belongs to
a bisecant M’ of L (Theorem 2.5) and s determines an orbit @' of a cyclic
subgroup of PGL(2, q). If O’ # O, then O intersects O in at most (¢+3./7)/4
points (Corollary 3.6 and Theorem 3.7), which is less than 0.41(¢ + 1) — 1.
Therefore, r and s determine the same orbit O, which implies M = M’'. So
K N L is only extendable by points of M, which shows that |[K \ L| < 2 and
this proves (1).

We can always assume that |K N M| = 2 since all hyperplanes of
PG(3,q) that contain M can contain at most n — 2 points of L\ M. If M
is a real bisecant and K contains one of the 2 points r; of M N L, then
K C OU {ry,r} where OU {ry,r} is a complete 3(g + 3)-arc of PG(3, q)
containing (q + 1)/2 points of L. If however K does not contain a point of
LN M, then we can assume that K N M contains 2 of the (g — 1)/2 points of
M \ L that extend O to a 3(g + 1)-arc (3.1(ii)).

If M is an imaginary bisecant, then we can assume that KN M contains
2 of the (g + 1)/2 points of M that extend O to a 3(g + 3)-arc (3.2(iii)). So
|K N L| =(q+1)/2 and K is a complete 1(g + 5)-arc. o

371



STORME AND SZONYI: ARCS AND NORMAL RATIONAL CURVES ...

Remark 3.10 Actually, the previous theorem yields a complete classification
of complete arcs K having at least 0.41(g+ 1)+ 1 points on L. Namely, these
arcs are contained in an arc consisting of an orbit O of size (¢ £ 1)/2 of a
cyclic subgroup of PGL(2, ¢), and two points on the bisecant M. If M is an
imaginary bisecant, then K N M contains 2 of the (g+ 1)/2 points of M that
extend O to a 1(g+ 3)-arc (3.2(iii)), while in case of a real bisecant, K either
contains 2 points of M \ L or one point of L N M and a point of M \ L.

4. Arbitrary dimensions

This section shows how the results in PG(3, q) imply results in PG(n, ¢) using
induction. The method we use is based on the ideas of [13].

Theorem 4.1 Consider the normal rational curve L = {(1,t,...,t")||t €
GF(q)*},q = p*,qodd, g > go,n > 3. Let K be a (k+1)-arc of PG(n, q) which
has k points in common with L. Assume that 1(¢+1) > k > 0.41(g+1)+n—2.
Let r be the unique point of K\L. Then r belongs to a real or imaginary
bisecant M of L.

(a) If r belongs to a real bisecant of L, then K N L is contained in a 3(g+ 1)-
arc K' C L which contains one point of the bisecant and the set of the
remaining (¢ — 1)/2 points is fixed by a cyclic subgroup of order (¢ — 1)/2 of
the automorphism group of L fixing the 2 points of the bisecant.

(b) If r belongs to an imaginary bisecant of L, then K N L is contained in a
1(g+1)-arc K' C L. Also K' is fixed by a cyclic subgroup of order (g +1)/2
of the automorphism group of L fixing the 2 conjugate points of L on the
imaginary bisecant.

Proof. The proof uses induction on n.

n = 3. This is Remark 3.10.

n > 3. Assume that this theorem is valid in n — 1 dimensions. Project
from each point p; of KNL onto a hyperplane a; skew to it. Let r be projected
onto the point r; of a; and L\{p;} be projected onto the normal rational curve
L; of a;. The points of K\{p;} are projected onto the points of a k-arc K;
of a; which has at least £ — 1 points in common with L;.

At most one point r; belongs to the normal rational curve L; [4]. Select
2 points p;,p2 of K N L for which ry € L, and r, € L;. It follows from the
induction hypothesis that r; belongs to a (real or imaginary) bisecant M; of
L;, i = 1,2. Select p; and p; so that r; and r, belong at the same time to real
or imaginary bisecants of L; and L,.

Case 1: (a) r; and r; belong to imaginary bisecants M; and M, of L, and
L, respectively. Using the 3-transitivity of the automorphism group of L we
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can suppose that p; = (1,0,...,0) and p, = (0,...,0,1). Choose a; : Xo =0
and @z : X, = 0. Then L is projected onto L; = {(0,1,¢,...,t* )|t €
GF(q)*}. Notice that the parameter t of a point of L\{p;} does not change
when we project it from p; onto Xy = 0. Then K\{p:} is projected onto Kj.
It follows from the induction hypothesis that there is a (g + 1)-arc K| C L,
in Xo = 0 containing K; N L, and K] is fixed by a cyclic group H; of order
(g + 1)/2. This group H, fixes the 2 conjugate points of L, on the bisecant
Ml.

(b) Lift everything to n dimensions and consider the set K’ C L in
PG(n,q) whose points have the same set of parameters as the set K| C L;.
Using the natural action of H; on the parameters of the points of L and L,,
H, can be regarded as a subgroup of the automorphism group PGL(2, q) of L
and it fixes K' setwise and also two conjugate points of L. The set K\{p,r}
is contained in K' and

|K'"\(K\{p1,7})| < 0.09(q + 1) + 3 — n < 0.09¢.

(c) Proceed now in the same way for p;. Project from p; onto X,, = 0.
Then L is projected onto the normal rational curve L, = {(1,¢,...,t"1,0)||t €
GF(q)*} of X,, =0, the point r is projected onto a point r; of X,, = 0 where
ry & Lj. The arc K\{p,} is projected onto a k-arc K, containing k — 1 points
of L,. From the induction hypothesis it follows that there is a %(q + 1)-arc
K, C L, containing K,N L, and K is fixed by a cyclic group H,. This group
fixes the two conjugate points of L, on the bisecant M,. Again, observe that
the parameter ¢ of a point of L\{p;} does not change when we project it from
p2 onto X,, = 0.

(d) We proceed as in (b) and lift everything to n dimensions. This yields
a 3(g + 1)-arc K" C L having the same parameters as K. This arc K" is
fixed by the group H,, regarded as a linear group in n dimensions, which fixes
2 conjugate points of L. Now K\{p,,r} is contained in K" and

|K"\(K\{p2,7})| < 0.09.

(e) As K\{p1,p2,7} C K'nK", by Corollary 3.6, we have that K' = K".
Therefore the two conjugate points corresponding to K' and K" are also
equal and so the groups H; and H, are equal. Let s, 3 = s? €GF(q?) be the
parameters of these conjugate points of L.

(f) It follows from (a) that 7, belongs to the bisecant through the points
(0,1,s,...,s" ') and (0,1,5,...,5" 1) of L; in Xy = 0. So r € {(1,0,...,0),
(1,s,...,s"),(1,8,...,3")) = m. From the corresponding facts for p, we get
that r € ((0,...,0,1),(1,s,...,s"),(1,5,...,5")) = 7. Sor € 11 N 72, which
is the imaginary bisecant through s; = (1,s,...,s") and 357 = (1,5,...,3").
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(g) Let G be the cyclic linear collineation group of order g+1 on L which
fixes the two conjugate points s;, 57. Then there exists a unique subgroup H,;
of G of order (g+1)/2 and H; defines two orbits on L, one of which is K' = K".
As K\{p1,r} C K' and K\{p.,r} C K" = K', we get that K\{r} C K'.

Case 2: (a) The points r; and r, belong to real bisecants M; and M,
of Ly and L, respectively. We can more or less repeat what we did in Case
1. So we get that the arc K\{py,r} is contained in a 1(g+ 1)-arc K' C L
in PG(n, ¢) and the points of K’ have the same parameters as the points of
K] C L,. Here K] is fixed by a cyclic group H; of order (¢ — 1)/2 fixing
also the 2 points of My N L,, K| contains one of the points of Ly N M; and
the remaining points constitute an orbit of H;. Analogously, K\{pz,r} is
contained in a (¢ + 1)-arc K" C L in PG(n,q) and the points of K" have
the same parameters as the points of K} C Lp; K is fixed by a cyclic group
H, of order (g — 1)/2 fixing the 2 points of M, N Ly, K} contains one of the
points of L, N M, and the remaining points constitute an orbit of H,.

(b) The only difference with respect to Case 1 is that the points of L,
and L, on the real bisecants M, and M, play a symmetric role; they can
replace one another. As this point does not change the arc at all, we can
select any of the 2 points of My N L; and M, N L,.

(c) Asin Case 1, |[K'N K"| > 0.41(g + 1) + n — 4, so by Corollary 3.6,
the orbits of Hy and H,, lifted to PG(n,q), are the same and so H; = H,.
Therefore the groups fix the same points whose parameters are denoted by
s, 8.

(d) Asin Case 1,7 € ((1,0,...,0),(0,1,s,...,s"1),(0,1,5,...,s™1))
= and r € ((0,...,0,1),(1,s,...,s"1,0),(1,¢,...,s™1,0)) = .

If s,s' ¢ {0,00} then 4, # 72, hence r € 11 Ny,, which is the line joining
(1,s,...,s") and (1,s',...,s™) and it is the desired real bisecant M of L.

If s =0, s" # oo, then again r € 1 N 7,, which is the line joining
(4,0,...,0) and (1,5',...,s™). But if we project from p; = (1,0,...,0) onto
Xo = 0, then r is projected onto the point r; = (0,1,s',...,5™!) and this
point belongs to L;. This contradicts the assumption r; ¢ L;, 1 = 1,2. The
other cases in which at least one of the parameters is 0 or oo can be treated
similarly, so these cases cannot occur.

(e) Asin (g) of Case 1 it is easy to see, using the results of (b), (¢) and
(d), that the arc K’ contains one of the points (1,s,...,s™),(1,s',...,s™) and
the remaining points form an orbit of a cyclic linear collineation group of L
of order (g — 1)/2 fixing the 2 points of M N L. O

We can obtain an explicit characterization of the 3(g + 3)-arcs K con-
taining (g+1)/2 points of L, since we know that these arcs contain an orbit of
a cyclic subgroup of PGL(2, q) of order (g + 1)/2. As the action of PGL(2, q)
on L, or on GF(q)*, does not depend on the dimension, we know that K N L
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or its complement is projectively equivalent to the set of points with param-
eter t = u?, u € GF(g), or t = (1 + tu?)/(2u), u € GF(q)*, see Theorem
3.1 and Theorem 3.2 (ii). Therefore the only thing we have to check is the
extendability of K N L by the points of the bisecant M.

Theorem 4.2 Let L = {(1,t,...,t")||t € GF(q)*} and letr = (1,0,...,0,a),
a # 0, be a point of PG(n,q), n >3, ¢ > qo, q odd, on the real bisecant of L
joining (1,0,...,0) and (0,...,0,1). Let K C L be a k-arc, 3(¢+1) > k >
0.41(¢+ 1) + n — 2, which is extendable by r.

(a) If n is even, —a is a non-square and K\{(1,0,...,0),(0,...,0,1)} is con-
tained in Oy = {(1,%,...,(x*)")|lu € GF(q)* = GF(g) \ {0}} or in

0, = {(1,4?,...,(Lu®)")||lu € GF(q)*} with £ a fixed non-square. Both cases
can occur.

(b) If n is odd, K C O, if a is non-square and K C O, if a is square.

Proof. (a) n even: It follows from Theorem 4.1 that K \ {(1,0,...,0),
(0,...,0,1)} is contained in O, or O,. The point r = (1,0,...,0,a) is lin-
early dependent on n distinct points (1,%;,...,t?), t; € GF(q), if and only if
[Tt = (—1)"'a = —a (n even).

Let S and O;, 7 = 1,2, be the set of parameters of the points of K and
0;, i = 1,2. Then S\{0,00} C O;, for some 2 = 1,2. If —a is square, then
by using the method of the proof of [14, Lemma 20], it is possible to write
—a as the product of n distinct elements of S. This is impossible so —a is
non-square.

The product of n distinct elements of O, 7 = 1,2, is always square
since n is even, so is never equal to —a. Therefore O; U {r}, O, U {r} are
2(g+1)-arcs. We can add one of the points (1,0, ...,0),(0,...,0,1) to extend
O;U{r},1=1,2, toa 3(q+ 3)-arc.

(b) n odd: The point (1,0,...,0,a) is linearly dependent on n distinct
points (1,%;,...,t%), t; € GF(q), if and only if [T, t; = (—1)*"'a = a since
n is odd. The difference between (a) and (b) follows from the fact that the
product of n elements of O;, : = 1,2, now always belongs to O0;,1=1,2. O

Theorem 4.3 Let L = {(1,t,...,t")||t € GF(q)*} and let r be a point
of PG(n,q), n > 3,q > qo, which is on the imaginary bisecant M of L
joining 1 = (1,4,...,7") to iz = (1, —1,...,(—1)") where i* = £ is non-square
in GF(q). Let O, = {(1,u,...,u™)|lu = (1 + &?)/(2t),t € GF(q)*} and
0,=L\O0,.

Suppose that K C L is a k-arc, ;(g+1) > k > 041(g+ 1) +n — 2,
extendable by r to a (k + 1)-arc.
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(a) If n is even, then K C Oy or K C O, and both cases can occur. Exactly
(g +1)/2 points of M extend Oy and O, to 3(q + 3)-arcs.

(b) Ifn is odd, then K C O, or K C O, and for a fixed point r on M, exactly
one case can occur. Bach point of M extends exactly one of O;1 = 1,2, to a
3(g + 3)-arc.

Proof. From Theorem 4.1, K C O; or K C O,. Embed PG(n,q) in
PG(n,q*) and proceed as in Theorem 3.2. The mapping 8 : t +— (t —
1)/(t + i) maps the line M to {(1,0,...,0),(0,...,0,1)). This mapping can
be extended to a collineation of PG(n, ¢?), 8(1,1,...,7") = (2*,0,...,0),
B, —i,...,(=)") =(0,...,0,2™(—)"). ’

So B(aiy +@iz) = (2", 0, ...,0,2" (=)&) = (L,0,...,0,(—1)"a2™?).
A point (1,0, ...,0,v) is linearly dependent on n different points (1,¢;,...,t?),
t; € GF(¢®), 1 < 1 < n, if and only if v = (—1)""1[]~, ¢;. Therefore
(1,0,...,0,(—1)"a?"?) is linearly dependent on n such points if and only
if —a®™!=1t;..-1,.

The points of L in PG(n, ¢) are mapped by 3 onto the points (1, 2, ..., z")
with z in Oy U O; where 0; = {z||2(#*})/? = 1,z € GF(q?)} and where
0; = {z||2(#*V/2 = —1, 2 € GF(¢*)}. So —a?' € 0, U 0.

(a) n even: The product of n elements of O, or O, always belongs to
0, since n is even. Since r extends K, f7!(r) extends S~!(K). As in the
proof of 4.2, it is first shown that —a?! belongs to O,. If —a?™! € 0,,
no product [I*, ¢; of n distinct elements of O; or O; equals —a?~!, hence
(1,0,...,0,(-1)"a® ') extends O = {(L,2,...,2")||z € O:1} and O, =
{(1,2,...,2™)||z € 02} to i(q + 3)-arcs. Applying 3! proves this theorem.

(b) n odd: The product of n elements of O; now belongs to O, since
n is odd. This explains the difference between (a) and (b). This difference is
analogous to the difference between (a) and (b) in 4.2. o

Finally, let us mention that the proof of the completeness of the arcs in
three dimensions, Theorem 3.9, was formulated so that it can be used in n
dimensions. The completeness of the arcs is stated in the following theorem.

Theorem 4.4 Let L be a normal rational curve in PG(n,q), q odd, q > qo,
n > 3, and let K # L be a complete k-arc with (¢ + 1) > |[K N L| >
0.41(g+ 1) + n —2. Then

(1) |K'\ L| £2 and the point(s) of K \ L lie on a real or imaginary bisecant
M of L;
(2) [KNL|=(q£1)/2. O
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Theorem 4.5 Let ny denote the integral part of 0.09¢g + 2.09, g > go. Let L
be a normal rational curve in PG(n, q), ¢ odd, where n > no, and let K ¢ L
be an arc in PG(n, q). Then

1
|KﬂL|§%—+n—no.

Proof. The proof is similar to [13, Theorem 4.7] and to [14]. o
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Flocks and partial flocks of the
quadratic cone in PG(3, q)

J. A. Thas C. Herssens F. De Clerck

Abstract

Let X be the quadratic cone with vertex v in PG(3,q). A partition
of K — {v} into ¢ disjoint irreducible conics is called a flock of K. A
set of disjoint irreducible conics of K is called a partial flock of X .
With each flock of K there corresponds a translation plane of order
¢? and also a generalized quadrangle of order (g%, ¢). In this paper a
partial flock F of size 11 is constructed for any ¢ = —1 mod 12. For
g = 11 F is a flock not isomorphic to any previously known flock. The
subgroup G of PGL(4,q) fixing K and F is isomorphic to C3 x Ss,
hence has order 12. Finally, with the aid of a computer, it was shown
by De Clerck and Herssens {3] that for ¢ = 11 the cone K has exactly
4 mutually non-isomorphic flocks.

1. Introduction

1.1. Flocks of quadratic cones

Let K be the quadratic cone with vertex v in PG(3, q). A partition of K — {v}
into ¢ disjoint irreducible conics is called a flock of K. The flock F is called
linear if the ¢ planes of the conics of F' all contain a common line L.

A set of disjoint irreducible conics of the cone K is called a partial flock
of K.

If F is a flock of the quadratic cone K of PG(3, g), g odd, then Bader,
Lunardon and Thas [1] have shown that from F there arise g other flocks
R, F,..., F,, some or all of them possibly projectively equivalent to F'. We
say that those flocks Fy, Fy,..., Fy are derived from F. From the construc-
tion it follows that F, Fy, F;,..., Fi_1, Fiy,. .., F, are derived from F;, 7 =
1,2,...,q.

We now list all the known non-linear flocks of the quadratic cone K.
Let K be represented by the equation X, X; = X2, and let the planes of the
elements of the flock be represented by a;Xo + b;X; + ;X + X3 =0, 1 =
1,2,...,q.

(1) The flocks FTW of Fisher, Thas and Walker (see Thas [17]):
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here ¢ = —1 mod 3 and

{(aia b.,c,)|1, = 1721 s ,(I} = {(t13t37 3t2)|t € GF(q)}

This flock is linear if and only if ¢ = 2.

(2) The flocks K1 of Kantor (see Thas [17]):
here g is odd, m is a given nonsquare, o is an automorphism of GF(q)
and

{(ai bi )i = 1,2,..., 4} = {(t, -mt°, 0)|t € GF(q)}.

This flock is linear if and only if o = 1.
(3) The flocks K2 of Kantor (see Thas [17]):
here ¢ is odd with ¢ = +2 mod 5, and

{(ai b, e)li = 1,2,...,9} = {(¢,5¢°, 5t°)|t € GF(q)}.

This flock is linear if and only if ¢ = 3.
(4) The flocks P1 of Payne (see Thas [17]):
here ¢ = 2° with e odd, and

{(as bi,e)li = 1,2,...,q} = {(1, %, )|t € GF(q)}.

This flock is linear if and only if ¢ = 2.
(5) The flocks K3 of Kantor (see Gevaert and Johnson [5]):
here ¢ = 5", k is a given nonsquare and

{(ai, by c)li = 1,2,...,q} = {(t, k7't + 2t* + kt®,¢%)|t € GF(q)}.

This flock is always non-linear.
(6) The flocks G of Ganley (see Gevaert and Johnson [5] and Payne [13]):
here ¢ = 3", n is a given nonsquare, and

{(aubi, )i =1,2,...,q} = {(t, ~(nt + n7't°),£*)|t € GF(q)}.

This flock is linear if and only if ¢ = 3.

(7) The flocks F1 of Fisher (see Gevaert and Johnson (5], Payne [12] and
Thas [17]):
let ¢ be odd, let { be a primitive element of GF(g?), so w = (! is
a primitive element of GF(q) and hence a nonsquare in GF(g); put
i= (@2 5642 =49 = —4; put z = (%! = a + bi, so z has order
g + 1 in the multiplicative group of GF(gq?); then the triples (a;, b;, ¢;)
are given by

(ta —wt, 0)
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with ¢ € GF(g) and t? ~ 2(1 + a)™! a square in GF(g), and
(—a2j, —waz;, 2bs;)

withj =0,1,...,(¢—1)/2, ax = ("' +27%)/(2+1) and b; = i(z** ~
z7%)/(z + 1). This flock is linear if and only if ¢ = 3.

(8) The non-linear flocks BLT, discovered by Bader, Lunardon and Thas
[1]; see also Johnson [6]. These flocks are derived from the flocks K3,
where ¢ = 5" with » > 1.

(9) The non-linear flocks JP, discovered by Johnson [6] and Payne [14],
applying derivation to the flocks K2 with g odd, ¢ = +2 mod 5, ¢ > 13.

(10) The non-linear flocks PTJLW, discovered by Payne and Thas [16]
and Johnson, Lunardon and Wilke [7] (see also Johnson [6]) applying
derivation to the flocks G of Ganley with ¢ = 3%, h > 2.

(11) The non-linear flocks P2 discovered by Payne [14] "re-coordinatizing”
the generalized quadrangles arising from the flocks P1 with ¢ = 2%A+1
h>1(cf. 1.3.).

1.2. Flocks for small ¢

In Thas [17] it is shown that for ¢ = 2, 3,4 any flock of the quadratic cone is
linear, in De Clerck, Gevaert and Thas [2] it is proved that for any q € {5, 7,8}
there exists exactly one non-linear flock, and by De Clerck and Mylle (see
Mylle [9]) it is shown with the aid of a computer that for ¢ = 9 there exist
exactly two non-linear flocks.

1.3. Flocks, translation planes and generalized quadrangles

Independently, Thas and Walker [18] discovered that with each flock of an
irreducible quadric of PG(3,¢), in particular a quadratic cone, there corre-
sponds a translation plane of order ¢ and dimension at most two over its
kernel; see also Bader, Lunardon and Thas [1], Fisher and Thas [4], Johnson,
Lunardon and Wilke [7] and Thas [17].

Payne [10] (see also Kantor [8] and Payne [11]) showed that with a set
of q upper triangular 2 X2 - matrices over GF(q) of a certain type, there corre-
sponds a generalized quadrangle of order (g2, q). In Thas [17] it is proved that
with such a set of ¢ matrices there corresponds a flock of the quadratic cone
of PG(3,q), and conversely that with each flock of the quadratic cone there
corresponds such a set of matrices. Hence with each flock of the quadratic
cone of PG(3, q) there corresponds a generalized quadrangle of order (g2, q).

By Payne and Rogers [15] the process of derivation never produces new
generalized quadrangles.
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2. A partial flock for ¢ = —1 mod 12 and a new flock
for ¢ =11

The notion of flock of the quadratic cone K of PG(3,q), g odd, is dualized as
follows. With K there corresponds an irreducible conic C in a plane PG(2, q)
of PG(3,q). With the g planes of the elements of a flock F of K, there cor-
respond g points ay,as,...,a, of PG(3,9)—PG(2, ¢) with the property that
any line a;a;, 1 # j and 1,5 € {1,2,...,q}, intersects PG(2, q) in an interior
point a;; of C. The set {a,, ay,...,a4} will also be called a flock of C and will
also be denoted by F. A line containing exactly t points of F' will be called a
t-secant of F.

Lemma 2.1 Let C be an irreducible conic of PG(2,q) and let L be a line
of PG(2, q) having no point in common with C. If ¢ = —1 mod 3, then there
exists an unique subgroup G of order 3 of PGL(3,q) fixing C and L. Also,
for any o € G — {1} the line L is the only fixed line, implying that the polar
point p of L with respect to C is the only fixed point.

Proof. Let C be the conic with equation X, X; = X2 and let L be any line
having no point in common with C. Further, let ¢ = —1 mod 3. As the group
PGO(3,q) of C acts transitively on the interior points of C, we may assume
that L has equation Xo + X; — X, = 0. The element

o 01 0 o
a:{z j—] 11 =2 ]
28 01 -1 T2

fixes C,L and generates a group G of order 3. Also, the only fixed point
of a (resp. a?) is p(2,2,1); hence the only fixed line is L. Since (1,0,0)* =
(0,1,0), (0,1,0)* = (1,1,1), (1,1,1)* = (1,0,0) and since PGO(3,q) acts
sharply 3 - transitiveon C, it is clear that for any three distinct points py, pa, pa
of C the unique v € PGO(3, ¢) with p} = p,p; = pa,p] = p1 has order 3 and
fixes a unique interior point of C. Let z3s be the number of such v’s fixing a
given line M, with C N M = 0; by the foregoing zps > 2. Then counting the
number of pairs (v, M), with M fixed by v, we obtain

2(157)/(557) = w

where the sum runs over all lines M with M N C = 0. As there are exactly
q(g — 1)/2 such lines M, and as the first member of (1) equals g(q — 1), it
follows that each M is fixed by exactly two elementsy,y~! =42 € PGO(3, q)
of order 3. ]
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Let ¥ = PG(3,q), with ¢ = —1 mod 12, and let C be an irreducible
conic of the plane 7o = PG(2, ¢). Further, let p be an interior point of C and
let L be the polar line of p with respect to C. By Lemma 2.1 there exist two
elements o, a™! = o € PGL(3, q) of order 3 fixing C and L.

Let M be a line containing p but not contained in 7, and let a;,a, be
distinct points of M different from p. The plane La; will be denoted by =;, ¢ =
1,2. Further, let 73 be the plane through L defined by {0, 73; 71,73} = —1.

Let L' be a line of 7y through p having no point in common with C and
let L' N L = {p'}. Choosing coordinates in such a way that 7o : X3 =0, C:
X3 = XoX1—X? = 0and p(2,2,1), it is readily seen that p’ is an interior point
of C if and only if 3 is a square. As ¢ = —1 mod 4, this condition is satisfied,
hence p’ is an interior point of C. Let y,4~! = 4? be the elements of order 3
of PGL(3,q) fixing C and L'. Since 7y and 42 induce no involution on L/, they
fix the common points z;, z; of C and L' over GF(g?). As {z1,2;p,9'} = —1
and neither 4 nor 42 induces an involution on L', we have p* # p' # p*
and so {p,p",p" } N {p,p",p"’} = 0. Now put p; = p",p; = pf,ps = p§
and ps = p,ps = p§,pe = P§; clearly p1pa, p2ps and paps all contain p. Then
{21, 22591, P4} = {2, 253 p2, ps} = {Z?Z,Z?Z;PJ,PG} =-L

Now put (see Figure 1)

T3 n aip; = {a,-+2}, 2 = 1,2,3,
a28i42 Na1piva = {ais}, 1= 1,2,3,
paies Nayps = {a;4s}, 1 =1,2,3.

Question. Is every point a;a, N 7T, 7 # k and 7,k = 1,2,...,11, an
interior point of C ?

Lemma 2.2 The plane asasag = w4 contains L, the plane agajoa1; = 75
contains L, and {m, 73; 74,75} = —1.

Proof. Let pyps N pspe = {I}. Then pSp§ N p5pg = p2pr N psps = {1}, and
p$p$ N pEDP§ = pap2 N Peps = {l"‘z}. Since pipa, p2ps, paps are concurrent, the
points [,1%,1%° are collinear. Consequently a fixes the line ll*. As L is the
only line fixed by «, we have [[* = L. Hence L contains the points [, [, 1=,

The common point ! of the lines azas and agas is projected from a;
onto the common point ! of the lines p;p; and psps. Hence [ is the common
point of a,! and aaas. As azas N p;p;3 is a point of mo N 73 = L, we necessarily
have | € azas. Hence {I} = a;l N azas = {I}. Consequently asas contains I.
Analogously [® € a,as and 1** € aga,;. We conclude that agasas = 74 contains
the line L. _

The common point { of the lines agas and agay; is projected from a; onto

the common point ! of the lines p4ps and p;p3. Hence [ is the common point of
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a,0 and agas. By the preceding section [ € agas. Hence {I} = a;1lNasas = {I}.
Consequently aga;; contains I. Analogously I* € ajpag and I** € aj1a10. We
conclude that aga;pa;; = 75 contains L.

Consider the plane a; L' = (. This plane { contains the points a,, a2, p, p1,
D1, Q3,a6,09,p . Let {m} = m3 N aja; and {n} = agag N mp'. We have —1 =
{70, ®3; T2y M} = {p,m;az,a1} = {aap, asm; azaz, aza1} = {p,n;as,a0} =
{L',p'n;p'as, p'as} = {mo, 73; 74, 7s}. Hence {mo, 7a; 74,75} = —1. |

Lemma 2.3 The harmonic homology ¢ with axis w3 and centre p fixes C,
fixes aa, a4, as, interchanges a,, a3, and interchanges also a; and a;43, © =
6,7,8.

Proof. The homology ¢ induces in 7y the harmonic homology o’ with axis
L and centre p. Since L is the polar line of p with respect to C, o' fixes C.
Also, since {7, m3; m1, 72} = {mo, ma; ma, s} = —1, o interchanges a1, a; and
interchanges a;,a,(3, 2 = 6,7,8. Clearly a3, a4,as are fixed by o. O

Lemma 2.4 If R is a line of my through p and ifr € R, r # pandr ¢ L,
then the line r*r®’ intersects L in the point R®, with B the polarity defined
by C.

Proof. We use the notations of Lemma 2.1. Let R be the line with equation
(Xo — 2X3) + AM(X1 — 2X,) = 0, X € GF(g) U {oo}. Further, let 7(2 + X +
2a,-2)A—142a,—A+1+4a) € R, with a # 0, 00. By the proof of Lemma 2.1
we have r*(—2A — 1+ 2a,)A — 1 +2a,—) — 2+ a) and r“z()\—- 14+2a,X+2+
24,2 + 1 + a). Hence r°r*" N L is the point (X, 1,1 + }), that is, the point
RA. o

Lemma 2.5 All the points a;a; N 7o = {a;;} with {3,7} # {3,7},{3,8},
{3,10},{3,11},{4,6}, {4,8},{4,9},{4,11},{5,6}, {5, 7},{5,9},{5,10}, arein-

terior points of C.

Proof. The points a,;, with : = 2,...,11, are the points p,p1,...,ps, 50
are interior points of C by Lemma 2.1.

By Lemma 2.3 the harmonic homology o interchanges a; and as, hence
also the points ay;, 2 = 3,...,11, are interior points of C.

The point azas N 7o is the point p1ps N L = {I} (see Lemma 2.2). By
Lemma 2.4 the point [ is the pole of pp; with respect to C. Since pp, = L',
the line pp, has no point in common with C. Hence [ is an interior point
of C. Consequently a3 5 is an interior point of C. Analogously, a3 4, a4s, as,7,
g5, 078, G910, G911, B10,11 are interior points of C.
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Since azg = ay,3 and a3z 9 = a; 3, also a3 and a3 are interior points of
C. Analogously, a4 7, a4,10, a5 8, @511 are interior points of C.

As agg = ar10 = as,1; = p, also these points are interior points of C.

Now we consider the points 86,10, 86,11, 37,9, 47,11, 28,9, 08, 10- Let a be the
element of PGL(4, q) defined by a{f = a;,a5 = ag,pf = pg,p2 p;;,p3 = p;.
Then & induces « in the plane 7o and fixes the set {a;,as,...,a;,}. Clearly
Ggio = a-,,u,a'?"u = (13,9,(15‘9 = as,lo,ag:,m = ag,;. Also, the homology o
interchanges agjo and a,g. Hence it is sufficient to prove that ag;o is an
interior point of C.

Projecting ag and a40 from a; onto the plane my, we see that ae 10 is on
the line pl*; projecting as and a;o from a; onto the plane mo, we see that ae 10
is on the line p,p,.

By Lemma 2.4, with R = L', we have I°(),1,1 4+ )); so by Lemma 2.1
we have I%(1 4+ A, —A,1). Hence the line p/* has equation (A + 2)Xo + (A —
1)X; — (4X +2)X, = 0.

Let 2,2 be the common points of C and L’ over GF(q?). Further, let
{z1,22;p,pa} = ¢. As 7 fixes z; and z;, and p” = p,4, we have {21, 25;p, 9"} =
{z1,22;9",p" } = {21, 22;9", p} = ¢. Consequently,

1= {z1,20;0,0"} - {21,22:0",0" } - {21, 22", p} = €.
It follows that ¢2 4+ ¢ + 1 = 0. The coordinates of the points z; and z, are
given by
21(A%,2X2 £ 30 + 2+ 2(A + 1)8, A\(A + 1 +6)),
22(A%,202 4+ 30 +2 - 2(A + 1)6, (A + 1 — 6)),

with 62 = 32+ X +1 and 6 € GF(q?) — GF(q). If ps has coordinates o, y1, ¥z,
then from {z;, z3; p,ps} = ¢ follows that

Yo=A+2+20— ¢ +2—26),
1= —2X—1420+¢£(2X +1 +26),
ya=—-A+14+0—-¢(-2+1-6).
If p1 has coordinates to,1;,1%5, then from {2, z3;p1,ps} = —1 follows
that

=20+X2+24+¢(2+2-20),
t =20 —2) —14¢(—20 —2) — 1),
ta=0— A+ 1+¢—0—X+1)

Now by Lemma 2.1 the point p, = p{ has coordinates

uo=20—2X — 1+ §(—26 —2) — 1),
uy =20+ A= 1+¢(=20+ X — 1),
up=0—XA—2+¢—6—X—2).
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Hence the line p;p4 has equation

(204 €6 =2+ 2)Xo+ (20 +£(6+ 32+ 1)) X, — (260 + £(6 + 41 + 6)) X2 = 0.
Since ag 10 is the intersection of pl* and p,ps, this point has coordinates

o =3(A + 1)(¢ +2) + 86¢,
ry = —3X\(¢ +2) + 86¢,
ra = 3(¢ +2) + 46¢.

Let GF(q?) = {z + Oy|z,y € GF(q)}, * =N+ A+ 1. If &£ =2’ + 6y,
then (2' + 6y')2 + (' + 6y')+1 =0, so
z? +6%% +2'+1=0, and
2z'y'+y' = 0.

Since ¢ ¢ GF(q), we have y' # 0, and consequently z' = —1/2.
Hence

02yl2 — _3/4 (2)
Now . .
8¢ _0(—3+8) @3- _ 1 (3)
E€+2 4oy stoy 2y
Hence

as10(3( X +1) —4/y', —3x —4/y',3 = 2/y").
The polar line Ag10 of as;10 with respect to C has coordinates

Bo= =32 —4/y,
B =30 +1)—4/y,

Further,
B2 — 4601 = 36(X% + X + 1) — 48/y"* = 12(36%y" — 4)/y".

By (2)
ﬂ; —4Bof1 = (—3)(5/1/’)2 =p.
Consequently, the line Ag 10 has no point in common with C, hence as 10
is an interior point of C. O

Lemma 2.6 Allthe points a;a;Nmo = {a, ;}, with {¢,7} = {3, 7}, {3, 8}, {3, 10},

{3,11}, {4,6}, {4, 8}, {4,9}, {4, 11}, {5, 6}, {5, 7}, {5,9}, {5, 10}, are interior
points of C.
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Proof. If o is the harmonic homology with axis 73 and centre p, then a3, =
a3,10,83 3 = Q311,036 = Q49,835 = Q411,856 = G59,057 = Gs,10- With «
the element of PGL(4, q) introduced in the proof of Lemma 2.5, we have
a3y = Q48,05 = G56,056 = 03,7,0310 = G4,11,851; = 05,9, 059 = 03,10, 835 =
46,856 = 857,857 = 03,8, 0311 = 04,9, 859 = 45,10, 85,10 = 83,11-

Let 7, be the harmonic homology with as axis the plane a,a;p; and as
centre the point I°°, where {{*} = p,ps Npsps. By Lemma 2.4 the point [*° is
the pole of the line L’ with respect to C. Clearly 7, fixes C, [*°, the points of
L', theline L, the planes 7; with7 = 0,1,...,5, and the points a,, a5, as, a3, as.
As the lines L'*, L'’ are uniquely defined by C,L and L', and as #, fixes C, L
and L', it also fixes the set {L’,L'*, L’”}. Hence 7, interchanges L'* and
L'"**. Since 1*" is on the lines pops and Pspe, these lines are fixed by 7, and so
p3' = p3 and pg* = pg. It follows that a7h = a;1,a' = as and a7* = ag. Hence
7 fixes the set F' = {a,4a,,...,an1}. Also, a7y = azs.

From the preceding two sections it is now clear that the group of all
elements of PGL(4, q) fixing 7o, C, p and F acts transitively on the set of the
12 points in the statement of the theorem. Hence it is sufficient to prove that
aa,7 is an interior point of C.

Projecting a3 and a from a; onto the plane 7, we see that a3 7 is on the
line py ps; projecting az and a; from a, onto the plane 7, and using Lemma
2.3, we see that as 7 is on the line p{p3.

By the proof of Lemma 2.5 the point p; has coordinates

to=(A+2)(¢+1)+20(1 - ¢),
tr= (=22 —1)(¢{+1)+26(1 —¢),
ta=(=A+1)(¢+1)+6(1-¢)

Now

1-¢ 3¢6
8=— = — by (3).
- F12 = 27 y (3)
Hence
pl(A +2+ 3/'.(/,, -2x-1 + 3/'.(/,, =2 +1+ 3/(2yl))

The coordinates of p; were determined in the proof of Lemma 2.5. Since
ps = pg, the coordinates of ps are given by (cf. proof of Lemma 2.1)

so= (22 +1)(¢ —1) +26(¢ + 1),
s = (=A+1)(€—1)+26(¢ +1),
s2=(A+2)(¢—1)+6(¢+1)

Now

41, & _

1
E—1  —£-2 2"

by (3).
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Hence
ps(2A+ 1+ 1/y, =2+ 14+ 1/y, 2+ 2+ 1/(2y")).

If 9,71, v2 denote the coordinates of the line p;ps, then

Yo=—=3(A2+ X +1)+9)/(2y') + 3/,
7=-3(A+A+1)—33/(2¢') —9/(2y"),
P2 =3(A2+ 2 4+1)—6)/y' +3/y".

Since 'NL = {p'(2+ A, —2) —1,-2+ 1)} and {p,p'; ;1, 0} = —1, we
have
p{(—6 + 4y’ + 2Xy', —6 — 2y' — 4)0y', =3 + 2y’ — 2)y").

The line pfpj contains the point pyp, N L, that is, the point
[*(—=1 — X, A, —1). Hence the coordinates o, 61, 8, of the line pJpj are given
by

S0 = 12¢(1 + X + X)) + 18y’ (A + 2),
61 = 12¢2(1 + A + A?) + 18y'(A — 1),
by = —12y%(1 + X + A%) — 36y'(2) + 1).

Since a3 7 is the intersection of p1ps and pJp3, this point has coordinates

do = y'(7TXA + 5) + 6,
dy = y'(—51 +2) +6,
dy=y'(2XA+7)+3.

The polar line A7 of a3 7 with respect to C has coordinates

Co=y'(=5X+2) + 6,
G=9y(TA+5)+6,
G = —2(¥' (20 + 7) + 3).

Further,
(2 — 46 = 12(13y"2 (X2 + X + 1) - 9) = 12(13y26% — 9).

By (2)
sz - 4(0(1 =-9.25 = JZ]

Consequently, the line A3 7 has no point in common with C, hence a3 7
is an interior point of C. O

Theorem 2.7 The set F = {ay,a,,...,a11} is a partial flock of the conic C.
In particular, for ¢ = 11 the set F is a flock of C.

Proof. This follows immediately from Lemma’s 2.5 and 2.6. ]
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Theorem 2.8 For ¢ = 11 the flock F is new.

Proof. For ¢ = 11, the previously known non-linear flocks of C are the
FTW flock and the F'i flock. The F'i flock has a 5-secant (corresponding to
the triples (t, —wt,0) in (7) of 1.1); for the FTW flock there does not exist a
plane containing 4 points of the flock.

If F admits a 5-secant N, then N necessarily contains a,, @, and a point
of each of FNw;, 1 = 3,4, 5. This yields a contradiction as a;2;NF = {a,, az}.
Also, the points ag, az, ag, @10 are contained in a common plane through p. We
conclude that F' is new. O

Problem. Is the partial flock F extendable to a flock for any ¢ = —1 mod
12? For g = 23 the partial flock seems to be uniquely extendable to a full flock.
This is one of the computer results obtained by De Clerck and Herssens [3],
see section 4 for a summary of these results.

3. The group of the partial flock

Theorem 3.1 The group G of all elements of PGL(4, q), with ¢ = —1 mod
12, leaving C and F fixed is isomorphic to Cy X Sa; hence G has order 12.

Proof. Suppose that n € PGL(4,4q) fixes C and F. So 7 fixes the plane
To. Assume by way of contradiction that {ai,a,} is not fixed by 5. Each
of the points a;,a; is on exactly three 3-secants of F. If e.g. a] = a,,1 >
2, then a; is on exactly three 3-secants of F', and consequently a; is on a
3-secant N containing neither a; nor a,. Let NN F = {a;,aj,ax}. Then
necessarily any of the planes 73, 74,75 contains exactly one of the points
a;, aj, ax. Projecting a;, aj, a; from a, onto 7y, we see that some side p;p;
of the triangle p;p;ps must contain a vertex ps of the triangle pypsps, with
ppir # PP # ppy. Applying a, we may assume that p;,ps, ps are collinear.
Now using the coordinates of p; = pf’ and the equation of p;ps (see proof
of Lemma 2.6), we immediately check that p; is not on the line p;ps. This
contradiction proves that 7 fixes {a;, a5}

In Lemma 2.3 we proved that the harmonic homology o with axis 73
and centre p fixes C, fixes a3, a4, as, interchanges a,, a,, and interchanges also
a; and a;43,2=6,7,8.

Now assume that n € PGL(4, g) fixes C, F, a, and a,. As 7 fixes the line
a1a; and the plane 7o, it also fixes p. Hence it fixes every point of the line
a;a;. Also the polar line L of p with respect to C is fixed. For any plane =
containing L, the line L and the point = N a;a, are fixed, and so 7 is fixed.
As 7 fixes 73 N F = {as, as, as} and L, also the set {I,1*,1¢°} is fixed.
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If n fixes each of [, 12,1 then it necessarily fixes each of a3, a4, as, each
of ag, ar,as, and each of ag, a9, 13, that is, 9 is the identity.

Now assume that 7 fixes [*° and interchanges [ and I®. Then a3, ag, ao
are fixed, and a] = as,a] = a4,a? = ag, af = a7, a7y = 411,47, = aj0. Hence
n is the harmonic homology 7, with axis a;a,p; and centre [°°, introduced in
the proof of Lemma 2.6. Analogously, if n fixes [ and interchanges [* and 1=
then it is the harmonic homology 7, with axis a;a;p; and centre [. Finally,
if 7 fixes I* and interchanges I and [, it is the harmonic homology 73 with
axis a,azp3 and centre [,

Next, assume that I" = [=,[°" = [@* [*7 = | Then p] = p,,p] =
p3,p] = p;. Hence 7 is the unique element & of PGL(4, q) which fixes a;, a,
and induces « in the plane 7. As a;‘; = a.;,a;‘; = a5,a§ = aa,aé’" = a-,,a? =
as,ag‘ = as,a§ = a0, a;‘;o = au,a;‘;l = aq, the projectivity a fixes indeed F.
Analogously, if I7 = 1#*,[¢*" = |*,[*" = |, then 7 is the unique element a of
PGL(4, q) which fixes a;, a; and induces a®> = a™! in the plane m,.

Consequently &' = {1,791, 92,73, &, a} is the group of all elements of
PGL(4, g) leaving C, F,a, and a, fixed. Clearly G’ induces S; on the set
{as, a4, a5}

It readily follows that G = 53 x C,. a

Remark. The orbits of G on F are {a;, a3}, {as, a4, as}, {as, ar,...,a11}.

4. Computer results

With the aid of a computer, the following results were obtained by De Clerck
and Herssens [3].

Result 1. For g = 11, the only flocks of the quadratic cone are the linear
flock, the FTW flock, the Fz flock, and the new flock described in this paper.

Result 2. For g = 13, there are at least 3 non-linear flocks, namely the
K2 flock, the F7 flock and the JP flock. If other flocks exist they should have
the same geometric structure as K2 or as JP.

Result 3. For ¢ = 16, there is exactly one non-linear flock of the
quadratic cone. This is the first non-linear flock for q of the form 22*.

Result 4. For ¢ = 17, there is a non-linear flock neither isomorphic to
one of the flocks (1) to (7), nor obtainable by derivation from one of these.
Hence for ¢ = 17 there are at least 6 mutually non-isomorphic flocks of the
quadratic cone.

Result 5. For ¢ = 23, the partial flock F' with 11 elements is uniquely
extendable to a full flock. This flock is a non-linear flock neither isomorphic
to one of the flocks (1) to (7), nor obtainable by derivation from one of these.
Moreover this flock yields a new flock by using the technique of derivation.
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Hence for ¢ = 23 there are at least 7 mutually non~isomorphic flocks of the
quadratic cone.
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Some extended generalized hexagons
J. van Bon

Abstract
We determine the flag-transitive extended generalized hexagons, such
that the group 7 : 6 is induced on the residue of each point and a
certain geometric condition (*) holds.

1. Introduction.

Recently R. Weiss [1], [2], classified flag-transitive extended generalized hexa-
gons, under an additional geometric condition (see (x) below). These geome-
tries belong to a Buekenhout diagram

Here the G,-residue is either one of the thick generalized hexagons asso-
ciated with the groups G;(q) or *Dy(q), or the point-thin generalized hexagon
(i.e., each point is incident with exactly two lines) associated with Li(q) : 2.
Let T be such a c¢.G,-geometry. In the special case where G,-residue is iso-
morphic to the generalized hexagon associated to L3(2) : 2, Weiss assumed
that the stabilizer of a flag F corresponding to a G3-residue induces L3(2) : 2
on res(F), the residue of F in I'. The purpose of this paper is to remove this
last assumption.

Let IT be the projective plane over GF(2) and denote by P, £ and F the
set of points, lines and maximal flags of II, respectively. Define II, to be the
geometry (F,P UL, ), where * is the natural incidence relation. Then II, is
a generalized hexagon having two lines through every point and three points
on each line. This geometry admits besides L3(2) : 2 one other flag-transitive
group of automorphisms; namely a group isomorphic to 7 : 6.

Let T’ = (By, By, B;) be a connected c.Il,-geometry satisfying condition

(%) There exist triples of pairwise collinear points not lying on any circle,

where the points, lines and circles are the elements of By, B; and B,
respectively. We shall prove the following theorem.
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Main Theorem Let ' = (By,B;,B3) be a connected c.Il,-geometry
with a flag-transitive group G < aut(T') satisfying condition (). Suppose that
for each P € B,, the group G% is isomorphic to 7 : 6, where G denotes the
group induced by Gp on res(P). Then |B:| = 24 and G = GL(2,7)/{—1) or
|B1| = 64 and G = 2%:7:6.

In [1] and [2] one of the first steps in the proof shows that two points
are incident with at most one line. However in our situation we do have some
examples occurring for which this fails. Besides the geometry obtained from
the first example by taking a quotient with respect to the centre, there is one
more flag-transitive c.G,-geometry such that there exist two points that are
incident with at least two lines. This one has |B;| = 4 and admits a flag-
transitive group G = 7 : (2 x A4). In both cases any 3 points are incident
with a circle so condition (*) fails, but we mention them as they will appear
during the coset enumerations.

One can try to extend the geometry over and over again by a circle-
geometry and thus obtain geometries of type c¢*.G,, with k > 2. In fact, in
the two previously mentioned papers, Weiss also classified these geometries
where the c.G;-residue is one of the examples there found. In this paper we do
not attempt to classify c*.G,-geometries, where k£ > 2 and the c.Gy-residue
is as in the Main Theorem. This is left as an open problem.

The organization of this paper is as follows. In section 2 we shall list
some properties of II, and the action of the group 7 : 6 on it. Further we shall
state some information about the examples. In section 3 the theorem will
be proved by reducing the possible presentations for the group G to a finite
number and then performing coset enumerations using CAYLEY. Throughout
this paper we will use Atlas-notation for our groups.

2. The geometry II, and the examples.

In this section we shall study the geometry I, and the examples in some more
detail. Recall the definitions from section 1. Let II be the projective plane
over GF(2) and denote by P, £ and F the set of points, lines and maximal
flags of II, respectively. Define II, to be the geometry (F,P U L, *), where
* is the natural incidence relation. Then II, is a generalized hexagon having
two lines through every point and three points on each line. This geometry
admits a flag-transitive group of automorphisms H isomorphic to 7 : 6, which
is a subgroup of the full automorphism group L3(2) : 2. Let ¥ denote the
collinearity graph of II,. The points and lines of II, can be identified with
the vertices and maximal cliques of ¥. For the remainder of this section we
shall freely use this identification without further reference. For an involution
o € H let fiz(c) denote the set of points fixed by 0. The following omnibus
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lemma collects some facts of H and IL,.

Lemma 2.1 Let II, and H be as above.

1.  There are 21 points and 14 lines;

2. For any point P and line [ we have |Hp| =2 and |H)| = 3;

3. An involution of H fixes 3 points and no lines;

4.  For any involution 0 € H and any two points P,Q € fiz(o) the

distance in ¥ between P and Q is 3.
Proof. Straightforward. O

The group H can be presented by generators z, ¥ and t subject to the
relations:

=y =t2=[y,t]=1,2¥ =z and z* =z~ L.

Let T = (t), e = ¥ and ¥’ be the coset graph of H on T obtained by
calling two cosets T'a and Tb adjacent if and only if ab~! € TeT U Te!T.
Hence ¥)(T) = {Te, Te™*,Tet,Te 't}. Observe that for each coset Th there
are unique 7 € {0,1,...,6} and ; € {0,1,2} with Th = Tz'%y’. Now two
cosets Ta and Tb, with a,b € (z,y), are adjacent if and only if ab™! €
{z*y, z%y?, 2%y, z%y?}. From this fact it follows that ¥’ has maximal cliques
of size 3 and any two maximal cliques intersect in at most one point. The
group H contains 7 involutions presented by t='=tz*, where : € {0,1,...,6}.
Using the action of H on ¥’ one finds that ¥4(T') contains the 4 cosets T'z,
Tz? Tz* and Tz® and U4(T) contains the 2 cosets Tz? and T'z® which are
both adjacent to Ty. Moreover, the latter set also contains the two cosets T'y
and T'y? which are fixed by T. In fact it is not too hard to prove the following
lemma, whose proof is left to the reader.

Lemma 2.2 The graphs ¥ and ¥’ are isomorphic. O

We now embark on the construction of the examples.

The group GL(2, 7) in its natural representation acts transitively on the
48 nonzero vectors of a 2-dimensional vector space over GF(7). Let H be the
stabilizer of such a vector. Let G = GL(2,7)/(—I) and H = H(-I)/{-I).
Then H = 7 :6. Let A be a subgroup of G with A = A, and AN H # {1}.
Calculations in G reveal that such a group A exists and that |ANH| = 3. Let
t be an involution in H. Then there exists an elementary Abelian 2-group L of
order four containing t. Call the elements of the set B, = {Hk|h € G} points,
those of the set B, = {Lg|g € G} lines and those of the set Bs = {Ah|h € G}
circles. Let P,Q € {H, L, A} with P # @, then a coset Pa is called incident
with @b if and only if Pa N @b # 0. Let I'y = (By, B2, B3) be the geometry
constructed above. There are 24 points, 252 lines and 84 circles; moreover,
each point is incident with 21 lines and 14 circles and each circle is incident
with 6 lines. Hence each line is incident with 2 points and 2 circles. Straight-

397



VAN BON : EXTENDED GENERALIZED HEXAGONS

forward calculations show that T'; is a connected c.Il,-geometry satisfying
condition (*). Let Z be the centre of G. It can be seen that in the collinearity
graph each point Ha is adjacent to all others except Haz and Haz?, where
(2) = Z. A second example can be obtained as a quotient from this example
by factoring out the centre of GL(2, 7).

A third example can be found in the following way. The group L3(2): 2
has an 8-dimensional representation over GF(2) (this is better known as the
adjoint representation). Let V be this vector space. There exists a v € V
whose orbit O under L3(2) : 2 has length 14. Call two vectors u,w € V
adjacent if and only if u — w € O. There exist maximal cliques of size 4,
corresponding to the translates of 2-dimensional subspaces contained in O U
{0}. The group L3(2) : 2 contains a subgroup H isomorphic to 7 : 6. This
group H leaves a 2-dimensional subspace invariant whose intersection with
O is empty. Denote by V the quotient of V by this subspace and restrict
the adjacency relation to V. We obtain a graph on which the semidirect
product of V with H acts. If one takes B, = {o|v € V}, By = {{&,@}|u —
w € O for some u € %, w € w} and Bz to be the set of 4-cliques. Then
Ty = (B1,B,, B3) is a connected c.II,-geometry and has the desired structure.
In particular, straigthforward calculations show that the collinearity graph
of res(P) has the following properties. Let @ € Gp and @ be an element of
res(P) not fixed by a. Then @ is adjacent to Q< if and only if @ and Q°
are at distance three in res(P). Moreover, these two vertices, S, and S,, are
the only vertices at distance three from @ in res(P), to which @ is adjacent.
Furthermore, S, and S; have a common neighbour in res(P) that is fixed by
the unique involution fixing Q.

Finally consider the group 7 : (2 x A,), that is the group generated by
four symbols a, b, ¢, d subject to the relations

=== =1a"=a1,a=0a? [a,c] = [b,c] = [b,d] = L,cxc? = T

Call the cosets of < a,b,d > points, those of < b, ¢ > lines and the < ¢,d >-
cosets circles. If we choose incidence as before, then straight forward com-
putations show us that we get an example of an extended hexagon, but this
time condition (*) fails.

3. The proof of the Main Theorem.

Let G and T = (B,,B;,Bs), be as before. The elements of By, B, and Bs,
will be called points, lines and circles, respectively. Suppose that P € By,
l € B, and v € B3 form a maximal flag of I. Then B = Bl{l"’} since I
is a generalized 2-gon, so |Bll| = 2 since 'y is a geometry of type c. Also
|Bo1P7}| = 3 since T'p = TI, and hence |B,”| = 4. Let A be the collinearity
graph on B;. Since I' is connected, so is A. Let @ € A(P) (where A(P)
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denotes the set of all points adjacent to P in A). Notice that each circle is
incident with 4 points so induces a 4-clique in the collinearity graph.

If there is more than one line incident with P and @, then the collection
of lines incident with P and @ form a block of imprimitivity for the action of
the group 7 : 6 on res(P). Hence the blocks have either size three or seven.
In case the block size is three, then the blocks are the 3 lines on P fixed by
an involution of 7 : 6. Hence |A(P)| = 7. The group Gpg induces a group of
order six on res(P) which acts transitively on the six blocks not containing
a line incident with Q. It follows that A is an 8-clique. In case the block size
is seven it follows that |A(P)| = 3 and thus A is a 4-clique.

Lemma 3.1 If P,1,v is a maximal flag, then Gp;, = 1; in particular Gp =
7:6.
Proof. Notice that in res(P) the stabilizer of a flag is trivial. Let ¢ € Gp,,.
Then g fixes all lines and circles incident with P and also all neighbours of
P in the collinearity graph. Let I’,4’ be a flag incident with P. Let @ be a
point, different from P, incident with this flag. Then ¢ € Ggu,, hence G
fixes all lines and circles incident with Q. By connectedness it now follows
that G fixes all points, lines and circles. O

If A is an 8-clique, then G is a subgroup of S acting 2-transitively on
eight points, hence G = GL(2,7). If A is an 4-clique, then the elements of
order seven and two fix A point wise. It follows that G = 7: (2 x A,)

From now on we will identify an element z € B, U B; with the set B,”.
For any circle «, let N, denote the kernel of the action of Gy on 4. Then
Gp = 17:6, |Gpg| = 2 and |Gpy/N,| = 3. From this it immediately follows
that Gp N Gg rs = {1} for each circle {P,Q, R, S} of T.

Lemma 3.2 For all circlesy of ' we have N, = {1}.
Proof. Let P,@, R, S be the four points incident with v. Each element of
N, fixes the points P, @, Rand S,s0 N, CGpNGoNGrNGs={1}. O

Corollary 3.3 For all circlesy of ' we have G, = A,.

Proof. Let v = {P,Q,R,S} be a circle. Then |Gp N Gg,r,s}| = 3, so G,
acts 2-transitively on a set of four vertices with a point stabilizer of order 3.
Hence G, = A,. o

Lemma 3.4 Let v be a circle incident with the line {P,Q}, (t) = Gpgq and
(f) = Gipqyy then [t, f] = L.

Proof. Both f and t are involutions so [f,t] = (ft)?. The line {P,Q} is
incident with exactly two circles, the element f fixes both of them whereas
t interchanges them. Now (ft)* fixes P, @ and the each of the two circles
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incident with {P, @}, hence (ft)* = 1. o

Let ! = {P,Q}. For 1 < i < 3,let X; denote the set of elements of B, at
distance 21 from { in the graph (B,YUBs¥, ) and Y; = {T € B,|{P, T} € X,}.
The elements of Y; are precisely the points co-circular with P and Q. By
condition (), A(Q)NY; # O for at least one of 2 = 2 or 3.

Lemma 3.5 Either [A(Q)NYz| =0, 4 or 8.

Proof. Let R € A(Q)NY,. Let {P,Q, S, S>} and {P, Sz, S3, R} be the two
unique circles incident with P and connecting the line {P, @} with {P, R}
in res(P). These two circles are the only ones incident with both P and S,.
The involution in Gyps, s, r} Which interchanges P with S, and 53 with R
also fixes {P,Q, 51,52} and interchanges @ with S;. So we have R € A(Q)
if and only if S; € A(S1). Now let e € Gp be the element of order 3 fixing
{@Q, 51, 82} with S¢ = Q. Thus we have S3 € A(S;) if and only if S5 € A(Q).
In res(P) the circle {P, S,, S3, R} is not fixed by e. Hence {P, S;, 55, R°} is
a different circle, and so S5 € Y,. Using the action of the group Gpg = (t)
we now find that {R, S5, R%, S5t} is a subset of Y with the property that
|{R, S5, Rt, S5} N A(Q) N Yy| is equal to either 0 or 4. Similarly we find that
|{S3, R, 5%, R} N A(Q) N Y| is equal to either 0 or 4. As these subsets form
a partition of Y, the lemma follows. O

From now on fix P, @, R € B, with {P,Q}, {P, R} and {Q, R} lines but
{P, Q, R} not incident with a circle. In other words we have Q, R € A(P) and
R € Y, UY;. Such a set exists by our assumption (*). The group Gp = 7: 6
has generators z, y and t such that

2=y =t2=[y,t]=1,2Y =2 and 2 = z~L.

Without loss of generality we may assume that @ can be identified with
the coset {t) in Gp. Set e = y*' then e normalizes a circle in res(P) incident
with @. Let v the circle incident with P and @ and normalized by e. As
G, = A, there exist an involution f € G, acting fix point freely on v with
(f,e) = Ay and Pf = Q. Hence, with help of Lemma 3.4, we find

= (efP =6 fl= 1.

As P, Q and R are pairwise collinear and Pf = Q it follows that Rf
is collinear with P and Q, but P, Q and Rf are not co-circular. We shall
investigate, in res(P), the possible positions of the lines { P, R} and {P, R}
with respect to the line {P,@}.

Lemma 3.6 If R = @Q* for some involution a € Gp, then I is isomorphic to
either I’y or I's.

Proof. Suppose that R = Q* for some involution @ € Gp. Then P¥2f =
Rf = QP for some B € {z,y). Hence Pfaff™ = Q and, as B € Gp, we find
that the element SfafB~! interchanges P with Q. Consequently, we have
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either BfafB~! = f or ft. Hence
of = (Ftk)=v)

for some ¢ € {1,2,3}, 7 € {1,2,...,7} and k € {0,1}. If R € Y3, then it
follows by the results of Section 2 and Lemma 3.5 that all four elements of
{R, S, R*, S5'} are the image of Q under some involution of Gp. Hence we
may assume that a = t*°; whereas if R € Y3, then we may assume that a = t%.
Moreover, as 8 € Gp and QP = R7 it follows that Rf € A(P), so R € A(Q).
Hence {P,Q, R} is a triangle not incident with a circle, thus T satisfies (x).
Performing a coset enumeration with CAYLEY proves the lemma. O
Remark From section 2 it follows that the automorphism group of I'; con-
tains elements satisfying both possibilities for a; whereas that of I'; only
contains elements satisfying a = t*.

From now on we shall assume that, if P;, P, and P; are points of
I’ pairwise collinear, but the three not co-circular, then P; and P; are not
interchanged by an involution of Gp,, where {i,7,k} = {1, 2,3}.

Lemma 3.7 We have Rf ¢ {R, R'}.

Proof. Both involutions ft and f interchange P with Q. As P, @ and R
are not co-circular we see that in res(R) the lines {R, P} and {R, @} are not
on a circle but in A are joint by an edge. Thus if R is fixed by either f or ft,
then we violate the assumption just made. O

Lemma 3.8 If S is a point collinear with both P and @, but not co-circular,
then S is not fixed by t; in particular Rf # Rft.

Proof. The involution t fixes in A(P) besides @ only Q¥ and QY. Thus
if ¢ = S, then S is either Q¥ or Q¥. Hence in A we find that Q is
joint by an edge to one of Q¥ or Q¥". Using the action of (y), we see that
C = {P,Q,Q% Q¥} is a clique of A. Any involution in Gp fixes exactly
3 neighbours of P in A. Hence the connected component containing P of
the vertices fixed by t is equal to the clique C. As f commutes with { and
interchanges P with @ it follows that f leaves C invariant. Again we may
assume that f does not fix @Y, so f interchanges Q¥ with QY and P with
Q. Straightforward calculations show that (fy)® fixes C point wise, hence
(fy)® =1 or t. Adding this relation to the previous ones and using CAYLEY
gives the desired result. (The coset enumeration yields 4 as an answer, which
corresponds to a quotient of II,.) o

Lemma 3.9 If P, R and R? are co-circular, where ¢ € {f, ft}, then A(Q)N
Y, #0.
Proof. Let {P,R,R% U} be a circle. Then U # Q and {Q, R, R*,U%} is a
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circle too. Hence in res(R) we have that {R, P} and {R, @} are not collinear
but {R, R*} is collinear with both {R, P} and {R, @}, so {R, P} and {R, Q}
are at distance two. Recall that P and @ are joint by an edge and that G
acts flag-transitively on I, thus we can find a similar structure in res(P) and
the lemma follows. O

Corollary 3.10 We have A(Q)NY; # §; in particular |A(Q)NY3| = 4.

Proof. Suppose that A(Q)N Y, = 0. Then the vertices R, R, Rf and R/t
are all in A(Q)NY;. By Lemma 3.7 and 3.8 these vertices are all different, and
are neither fixed by ¢ nor the image of @ under some involution of Gp. From
the structure of Y; follows that {P, R} is co-circular with either R or Rft, a
contradiction with the previous lemma. As the set Y, contains four vertices

which are the image of @ under some involution it follows from Lemma 3.5
that [A(Q)NY,]| = 4. a

Lemma 3.11 Either [A(Q)NY3| =2 or |A(Q)NY3| = 4.
Proof. First observe that t acts fixed point freely on the set A(Q)N Y. By
the various assumptions we are making, it follows that neither the two points
fixed by t nor the two points which are the image of @ under some involution of
Gp are in A(Q)NY;. Consequently it is sufficient to show that A(Q)NY; # 0.
To this end let R € A(Q)NY, and {P,Q, 51, Sz} and {P, S, 53, R} be the
two unique circles incident with P and connecting {P, @} with {P, R} in
res(P). Clearly @ is not collinear with S; and {P, @, R} is not incident with
a circle. Similarly we find in res(S,;) that {R,Q, S2} is not incident with a
circle. Now in res(R) we have the circle {R, P, S5, S3} and neither line of it
is co-circular with {R, @}. Hence at least one of the lines {R, P} and {R, S,}
is at distance 3 from {R,Q}. As both P and S, are collinear with @ and G
acts flag-transitively the lemma follows, o
By Corollary 3.10 we may take R = Q°¢, so R = Pf*t=. Write Rf = Q*.
Then pRf = Pfetef = P8 hence fetef3'f € Gp If Rf € Y, then, as
R # R, either Rf = Q<" = Q=¥ or Rf = Q<" = Q=™'v. If R € Y; then
either Rf = Q=¥ Rf = Q’—l“_l, Rf = Q¥ or Rf = Q*'. Consequently
B € {zy,z 'y, zy~!,z" 'y}, yz,yz~'}. Thus we obtain the additional relation
fetefB~1f = z'yitk for some 1 € {0,1,...,6}, j € {0,1,2} and k € {0,1}.
Remains to show that a possible outcome will satisfy condition (*).

Lemma 3.12 There are triangles not incident with circles.

Proof. Let a = ete, 8 as above and v € Gp such that faf8 1fy = 1.
Then P is adjacent to Pf®, Pf#™" and Pf7. Clearly P + PfB7 47 and
piBt ity £ PfefB~'f — P Hence P, P = Q" and pigT = Qﬂ“‘h are
three different mutually adjacent vertices. These are incident with a circle if
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and only if P, @ and QP are. Applying f and B to this triple we see that

this is true if and only if P, Q and Q® = R’ are incident with a circle, which

is not so. ]
Performing coset enumerations with help of CAYLEY, Theorem 1.1

follows.

Remark The coset enumerations yield also 4 and 8 as an answer, these

correspond to the geometries determined at the beginning of this section.
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Nuclei in finite non-Desarguesian
projective planes

F. Wettl *

Abstract

Let K be a point set in a finite projective plane. A point P is called
a nucleus of K if no line through P intersects K \ {P} in more than
one point. There are several results on the number of nuclei in a finite
Desarguesian plane. This paper deals with the non-Desarguesian case.
An application on strong representative systems is given.

1. Introduction

Let K be a set of k points in a finite projective plane 7. A point P is called a
nucleus of K if no line through P intersects K \ {P} in more than one point.
P is called an ezternal nucleus if P ¢ K, and P is called an internal nucleus
if P € K. If K has an external nucleus, then |K| < g+ 1, if K has an internal
nucleus, then | K| < g+2. The set of external nuclei of K is denoted by E(K),
the set of internal nuclei is denoted by I(K). Results on external nuclei can
be found in [3], [5], on internal nuclei in [12], [10], [13], [14]. Blokhuis and
Wilbrink [5] proved the next theorem:

Result 1 [5] In 7 = PG(2,q) the lines are the only (q + 1)-sets admitting
at least g external nuclei.

This means, that if the points of a (¢ + 1)-set are not on a line, then
the number of external nuclei is at most ¢ — 1, that is |E(K)| < ¢ — 1. The
aim of this paper is to find an upper bound for the number of external nuclei
of a (g + 1)-set, when 7 is not a Desarguesian plane. The next theorem will
be proved.

Theorem 1.1 If K is a (q+ 1)-set in the finite projective plane 7 of order q
and if the points are not on a line, then

|E(K)|Sq\/4q+1—q+\/4q+1+1

5 =n4+n’+n+1,

*. This work was supported by the Hungarian Resarch Foundation for Scientific Resarch
(OTKA) # 326-0313.
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where n = 2(\/4¢ + 1 —1), that is ¢ = n(n + 1).

The sharpness of this theorem is not known. If g is a prime power, and
g > 2, then the right side of the inequality is not an integer. Equality may
occur, only if n is an integer, and a plane of order n(n + 1) exists, with a
subplane of order n.

As an application of Theorem 1.1, we prove a result on maximal strong
representative systems. A flag of a finite projective plane 7 is an incident
point-line pair (P, L). A set of flags

S ={(P,Li),..., (P, L)}

is called a strong representative system, if P; € L; holds if and only if z = j.
S is said to be mazimal if it is maximal subject to inclusion as a set of flags.
It was proved in [8], that

g+1<k<q/g+1

holds for a maximal strong representative system S of k flags. A paper of
Blokhuis and Metsch [4] in this book deals with the upper bound. The next
configuration theorem was proved in [8] about the lower bound of k.

Result 2 [8] Let S = {(P1,L1),...,(Pyt1, Lg+1)} be a maximal strong rep-
resentative system of ¢ + 1 flags in 1 = PG(2,q). Then either Py, ..., Py,
are on a line, or Ly, ..., Lyy, are concurrent lines.

In this paper we generalize this theorem for the non-Desarguesian planes.
Theorem 1.2 Let S = {(Py, L1),...,(Py+1, Lg+1)} be a maximal strong rep-
resentative system of ¢ + 1 flags in a finite projective plane 7. Then either

Py, ...,Py, areon aline, or Ly, ..., L4, are concurrent lines.

Let us study next the case of internal nuclei. We know the next results:
Result 3 [2] Let |K|=q+2inm = PG(2,q). If |I(K)| > 3, then q is even,
and in this case I(K) = K, or |[I(K)| < 1.

Result 4 [13] Let |K|=g+1in7 = PG(2,q). If I(K) # K, then |I(K)| <
1%5+)-

The internal nuclei of a point set are necessarily on an arc. In the
extremal constructions of the results above, the points of K \ I(K) are on a
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line. Point sets with this condition have an application in cryptography (see
[9]). The next theorem is about this type of point sets.

Theorem 1.3 Suppose |K| is a (q + 2)-set in a projective plane of order g,
q even. If the set K \ I{K) is a nonempty subset of the points on a line then

Vig+1-1 .

lI(K)| < q— 5

The form of this inequality is

[I(K)| < q— /4,

if q is a square, and this bound is sharp. If K satisfies the same conditions,
but g is odd, then |I(K)| < q —2.

2. Proofs

For the proof of Theorem 1.1, we first study the case where K is a (g +1)-set,
which contains at least ¢ — /g collinear points.

Lemma 2.1 IfK is a(g+ 1)-set in a finite projective plane = of order ¢ and
if K has g+ 1 — s collinear points (s > 2), then

|E(K)| < s(s—1).

Proof of Lemma: Let L be that line which contains ¢ + 1 — s collinear
points of K. Let us denote the points of L\ K by Q;, Q2,..., Q. and the
points of K \ L by Ry, Rs,..., R, (s > 2). If P is a nucleus of K, then a
permutation ¢ of the subscripts 1,2,...,s can be given by the collinearities,
such that ¢(z) = j if and only if P, @; and R; are collinear points. Every
permutation ¢ belonging to a nucleus is determined uniquely by the effect of
¢ on any two different subscripts. This means that there are no two different
permutations which both map 7, to j; and %, to 7, (31 # i,). Let us denote
the maximum number of such a permutation set on s points by p(s). It is
clear that p(s) < s(s — 1), because the subscripts 1, 2 have s(s — 1) possible
images. This proves our lemma. O
Applying this lemma we get the next corollary.

Corollary 2.2 If K is a (q + 1)-set in a projective plane 7 of order q and if
K has at least ¢~ /g — 1 and at most ¢ collinear points, then

|E(K)| < q+3,/g+2.
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Proof of Theorem 1.1: First we follow [7]. Let I1,...,[; be the secants of
K. Let e; denote the number of points of K on I;. Clearly

;e.-(e.-— 1)=(g+1)g. (1)

Let m = max{e; || = 1,2,...,k}, let B be the set of lines disjoint from K
and let b be the number of these lines. A standard computation shows that

k

b:Z(e;—l)—q

=1

and so from (1)

(410 = Yoo~ ) Sm¥(ei~1) = mlb-+9),

=1

that is

¢ +gq
>1 T3 .
b2 "= —g (2)

It is also clear that
b> (g+1—m)(m—1) (3)

We show that

b > gv/4q+1—-3q++/4g+1-1 _ B
— 2 b

This follows from (2) f m <n+1 and from 3)ifn+1<m<qg+1-—n.
A line disjoint from K is not incident with a nucleus of K, that is E(K)
is a subset of those points which are not covered by the lines of B. Let B’ be an
arbitrary subset of B for which |B’| = n®. Let t; denote the number of points
which are incident with exactly ¢ lines of B’. This means that |E(K)| < to.
Counting in two different ways the points of the plane, the flags (P, L), with
P a point incident with a line L of B’, the triples (L, L', P} with L and L’

different lines of B’ incident with P, we get the following equations:

f m<qg+1l-—n.

q+1
Lti=g"+g+1-t,

=1

q+1

D iti=|B(g+1),

=1
q+1

Do - 1)t = |B)(1B] - 1).

i=1
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Adding up the last two equations we get
q+1
Y Pti=B(g+1B').
=1
To estimate of t; we consider the next inequality:
q+1
S (GE—n)t;>0.
=1

Substituting the previous equations into this inequality, we get:
1B'l(q + 1B]) — 2n|B'l(g + 1) + n*(¢* + g + 1 ~ to) > 0,

from which

9vVig+1—g+Vig+1+1
)

to<n®4+n’+n+l= 5

and this completes the proof. An other end of this proof is possible by the
inequality between the quadratic and arithmetic means, from which we obtain

gtl g+l \?  eh1 g+l

Yot/ Yot <Dt/ Yk,

=1 =1 =1 =1
that is, after the substitutions,

(1B'l(q + /(g +a+1 o))" < |Bl(q + [B'/(a> + g +1 — to),

and this leads to the same result. O
Proof of Theorem 1.2: Here we follow the proof of Result 2, using the result
of Theorem 1.1. As before, let n = 3(v/4g + 1 — 1), so that ¢ = n(n + 1). Let
K = {Py,...,P,41} and suppose that the points of K are not all on a line.
Similarly suppose that {L;,..., L1} is not a pencil. Hence there exists a
point P which is not covered by L; U... U Lyy;. Such a point P belongs to
E(K), because otherwise there would be a line L through P which is disjoint
from K, and thus S would be extendible by the flag (P, L). The number of
these non-covered points is at least

C+a+1-((g+1-myP+mg+1)=m(g+2-m)—q—1,

where m denotes the maximum number of concurrent lines of S. This is true
because m concurrent lines cover mq+ 1 points, and each other line covers at
most ¢ + 1 — m new points, i.e. the number of the covered points is at most
(g+1—-m)2+mgq+1. Let L; and L; are two different lines of S, and denote
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by @ the intersection of them. Let us suppose that @ ¢ E(K), then there is
a line L through @, which has no point of K. At least one point R of this
line is not covered by the lines Ly (k= 1,...,q9+ 1), because @ is covered by
at least two lines. It means that S is extendible by the flag (R, L), and this
contradiction proves that @ € E(K). The number of this type of points is at
least ¢ + 1, by Fischer’s inequality, because the points of K are not all on one
line. Comparing these lower bounds with the upper bound of Theorem 1, we
get the following inequality:

9vig+T—-g+Vig+1+1
2

It follows that m <n+1 or m > g+ 1 —n. Let us now derive another bound
for the size of E(K). We saw that all points that are on no line of S are in
E(K) as well as all points that are on more than one line of S. Since there
are at most m lines in § concurrent we see that every line in § contains at
most ¢+ 1 — g/(m — 1) non-nuclei. It follows that the total number of nuclei
is at least

m(g+2—m)<

=gqn+n+1.

_datD)

m—1

2 1—(g+1)(g+1— —2
¢ +g+l-(g+1)(g+1-—7)
Using again the upper bound of Theorem 1 we obtain

glg+1)

—qg<gqgn+n+1,
m—1

and this implies m > n+ 1. Combining this with the above we see that either
m = n + 1 and we have equality in all estimates, or m > ¢+ 1 — n. Let us
first get rid of the second possibility, since this is the easiest. Consider the
point P that is the intersection of at least ¢ + 1 — n lines of S. Let M be
another line through P. At most n points of M lie on exactly one line of S,
so M contains at least ¢ + 1 —n > ¢ — /g nuclei. By a result of Cameron
and Fisher [6], this means that all nuclei are on the line M, so M is unique,
and there are ¢ lines of S passing through P. One can easily verify that such
a set can not be maximal.

Next we consider the case m = n + 1. Using the fact that we have
equality in all estimates, we get that the lines in S form a (dual) subplane
II; (of order n) and the points in K are the points of a disjoint subplane II,.
Note that every point in II; is a nucleus of K, the points of II,, since it lies
on more than one line of S, on the other hand no point in II; is nucleus of
I1,. Since both subplanes have the same number of nuclei, there is a point P
that is a nucleus of II; and not of II,. This means that the point is not on a
line in S and on a line missing K. It follows that the strong representative
system is not maximal. ]
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Proof of Theorem 3: Let g be even, |K| = g + 2, assume that the elements
of K\ I(K) are on the line L (so |L| > 3), |[LNK|=k,so |[K\L|=q+2—k.
There are k tangents to every point of the arc K \ L, these points are nuclei,
so every tangent meets L in a point of K. This means that ¢ + 2 — k and so
k must be even, otherwise there would be at least one tangent through every
point of L. Let P be a point of L N K, and let £ be the set of lines, which
contains the next lines:

the line L,

those lines, which intersect K in P and in a point of K \ L,

those lines, which intersect K in a point of (K N L)\ {P}.
The number of these lines is clearly 1+ (¢ +2 — k) + (k—1)(k —2). We prove
that £ is a dual blocking set, that is every point of the plane is covered by a
line of £, and £ has no ¢+ 1 concurrent lines. This last statement is clear, so
indirectly, let Q be a point, which is not covered by £. This means, that the
line PQ has no more points of K, and the lines PR, where R € (KNL)\{P},
intersect K \ L in one point. In this way we have k — 1 tangents of K \ L
through @, but £ — 1 is odd, so we have at least one more tangent, but it
intersects L \ K, which is a contradiction.

Let L' be a line, for which L N L' = {P}. The points of L'\ {P} are
covered by the lines of type (3), so

(k=1)(k-2)>q,

which implies the given inequalities. The sharpness of the estimation in the
case of square g follows from the construction in Hall planes given by Szényi
11).

A good estimation in the case of odd g seems to be more difficult. To
exclude the cases |[I(K)| = q, ¢ — 1 is simple. If |[I(K)| = ¢ — 2, that is 4
non-nuclei are collinear, then K\ L together with two of the collinear points is
a complete g-arc. The complete g-arcs are studied in a paper of Beutelspacher
[1]. At the moment the existence of a complete g-arc is undecided, for which
there is a point Q, such that there are ¢ — 1 tangents and a secant of the arc
through Q. Adding one or two of this type of points to a complete g-arc, we
may get a set of ¢ + 1 or g + 2 points K, such that |I(K)|=q —2. O
Acknowledgement. The author thanks T. Szényi for fruitful discussions
and the referee for correcting the proof of Theorem 1.2 adding new steps to
it.
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